WORK PLAN

REMEDIAL INVESTIGATION/FEASIBILITY STUDY DU PONT - NEWPORT SITE NEWPORT, DELAWARE

VOLUME III

APPENDICES G to L

Prepared for:

E.I. DU PONT DE NEMOURS AND COMPANY

Wilmington, Delaware

Prepared by:

WOODWARD-CLYDE CONSULTANTS

Plymouth Meeting, Pennsylvania

July 28, 1988

Appendix G

Soil Gas Survey DuPont Newport Site Newport, Delaware

TABLE OF CONTENTS

			Page Numbe
1.0	DATA	A OBJECTIVES	1
2.0	SAMI	PLING METHODOLOGY	1
	2.1	SOIL GAS PRINCIPLES	1
	2.2	SURVEY BOUNDARIES	2
	2.3	PROBE INSTALLATION	2
	2.4	SAMPLE COLLECTION	3
3.0	ANA	LYTICAL METHODOLOGY	4
4.0	QUA	LITY CONTROL	5
	4.1	DECONTAMINATION PROCEDURES	- 6
,	4.2	SAMPLE ANALYSIS	7
5.0	RESU	LTS	8
	5.1	NORTH DISPOSAL SITE	8
	5.2	SOUTH DISPOSAL SITE	10
	5.3	CONFIRMATORY ANALYSES	10
6.0	CON	CLUSIONS	11

LIST OF TABLES

	Table Number
SUMMARY OF DUPLICATE SAMPLE ANALYSIS	1
SOIL GAS SURVEY RESULTS FOR NORTH DISPOSAL SITE	2
COMPARISON OF FIELD AND LABORATORY ANALYSES	3
LIST OF FIGURES	
	Figure Number
PCE CONCENTRATIONS NORTH DISPOSAL SITE	1
TCE CONCENTRATIONS NORTH DISPOSAL SITE	2
TCE AND PCE CONCENTRATIONS SOUTH DISPOSAL SITE	3
APPENDICES	
	Appendix
LABORATORY ANALYSES	G-1

1.0 DATA OBJECTIVES

The primary objective of the soil gas survey performed at the Du Pont Newport Site was to delineate possible trichloroethylene (TCE) and tetrachloroethylene (PCE) vapor concentrations in both the North and South Disposal sites. Volatile organics, including TCE and PCE, were detected during previous groundwater sampling in pre-existing monitoring wells proximal to both sites.

2.0 SAMPLING METHODOLOGY

2.1 SOIL GAS PRINCIPLES

Volatile organic chemicals (VOCs) in groundwater or soil can often be detected in soil gas. Soil gas is the gas in the spaces between soil particles in the unsaturated soil (vadose zone) above groundwater.

VOCs volatilizing from groundwater or soil into soil gas will travel through the vadose zone by convection (air movements induced by changes in atmospheric pressure, temperature, evaporation, and winds) and diffusion.

When groundwater containing VOCs has migrated away from source areas, the concentration of VOCs found in the soil gas may be correlated, in a general way, to the concentration of VOCs in the underlying groundwater. Similarly, in soil, as VOCs move away from source areas, a rough pattern of decreasing concentration with distance from the source may be detected in the soil gas. This pattern may be well defined in homogeneous systems. In non-homogeneous systems soil gas migration will follow a path of least resistance. Because of this, heterogenous soil conditions, (like those on the North Disposal site) may obscure the pattern of VOC migration from soil source areas or from groundwater. Soil gas concentrations can also vary significantly with atmospheric changes. Soil gas samples taken at the same location, but days or weeks apart, may vary in concentration. Because of these factors, in interpreting the results of a soil gas survey, overall patterns of relative contamination should be assessed rather than specific individual observations.

-2-

The soil gas survey at the Newport Site involved probe installation for soil gas withdrawal at sampling points throughout the site. The soil gas samples were then analysed by a field operable gas chromatograph (GC) located on-site and equipped specifically for TCE and PCE analysis. Detailed methods used are described below.

2.2 SURVEY BOUNDARIES

The landfill boundaries served as the limits of the soil gas survey. Soil gas samples were taken at points along a 100-foot grid pattern surveyed over both disposal sites, shown on Figures 1 and 3.

All grid nodes surveyed within the fence line of the North Disposal site proved to be accessible soil gas sampling points. Several grid nodes surveyed on the South Disposal site were in areas of very shallow depth to groundwater and therefore were not used as soil gas sampling locations. Several soil gas samples were taken in places not surveyed as part of the site grid. A uniform sample depth of five feet was maintained wherever possible.

2.3 PROBE INSTALLATION

Soil gas samples were taken from the vadose zone by placing a probe several feet into the soil and withdrawing soil gas using a vacuum pump. The probes used on-site were seven feet long, half-inch diameter stainless steel pipe, sealed at the bottom to prevent soil intrusion during placement, and slotted over the lower foot for soil gas withdrawal.

All probes were steam cleaned on-site and wrapped in aluminum foil and plastic sheeting in groups of ten until used. Before installation, one probe from each batch of ten was checked for residual contamination according to quality control procedures outlined in Section 4.0.

Seventy-two probes were installed (sixty-four of which were used for sample collection) at points defined by a 100 foot grid surveyed over both disposal sites. Probe locations are presented on Figures 1 and 3. Probe depths are included on Table 2.

The probes were placed at a depth of approximately five feet by means of a pneumatic fence post driver or sledge hammer. A probe depth of five feet was used to minimize the effects of atmospheric flux in the soil gas while being high enough above groundwater to avoid interference with the collection of soil gas. Resistance at shallower depths was encountered in several places on the North Disposal site. After two or three attempts to install the probe to five feet failed, the actual depth of installation was recorded. No probe was installed less than three feet below ground surface. After installation, the probes were sealed until sampling to minimize atmospheric interference.

2.4 SAMPLE COLLECTION

At the time of sampling the probe cap was removed and a sampling head was installed. The sampling head formed an airtight seal over the head of the probe. The top of the head terminates in a T joint. One side of the T serves as a vacuum port with an airtight connection to polypropylene tubing leading through a flow meter to a vacuum pump. The other side of the T was fitted with a septum port to allow syringe sampling.

Each probe had a dedicated sampling head. Dedicated sampling equipment and the design of the sampling head, which allowed sample withdrawal upstream of the vacuum line, prevented potential cross-contamination during sampling.

After the sampling head and vacuum head were attached, the vacuum pump was turned on. The rate of soil gas withdrawal was held at one liter per minute. The vacuum was drawn for five minutes before sampling. This was done to ensure evacuation of the probe volume and any air introduced during sampling. It was also done to ensure that a fairly consistent and representative sample of gas was withdrawn from an area around the probe bottom. After five minutes, a 100 cc sample was collected through the septum port with a gas-tight syringe. The syringe was then labeled and taken for analysis.

Laboratory samples were obtained by placing a two-liter glass bulb with teflon stopcocks in the vacuum line attached to the probe head with a minimal length of new polypropylene tubing.

After sampling, the vacuum pump was turned off, the sampling head was labeled and removed, and the probe was resealed.

3.0 ANALYTICAL METHODOLOGY

Soil gas samples were analysed within one-half hour after sampling by injection directly into the gas chromatograph (GC).

The GC used was a Varian 3400 series equipped with dual electron capture detectors (ECD). ECDs were chosen because they afford the most sensitive analysis for the chlorinated organic compounds of interest on the site-TCE and PCE. The columns used were 2.6 meters long filled with SP2100 on Supelcoport 100-120 mesh, made by Supelco, Inc., of Bellefonte, Pennsylvania. Column temperature was 100° C. The column material and temperature were chosen because in past experience a good separation of TCE and PCE was obtained in a timely manner. Peak areas were integrated by Hewlett-Packard 3392A integrators.

A GC analysis begins when a sample is injected with a syringe through a septum into the GC. The sample gas then is carried down a tubular column by pure nitrogen gas flowing under pressure. As the sample travels down the column, individual chemical compounds will separate because higher molecular weight compounds move slower through the column packing than lighter weight compounds. Individual compounds elute off the end of the column in discreet intervals (recorded as peaks) which are quantified by the ECD.

The ECD, located at the end of the column, contains a cell which emits energetic beta particles from an 88 uCi 63Ni radioactive foil. This ionizes the N2 carrier gas molecules while the top of the cell monitors the free electron concentration. When compounds exhibiting electron absorbing characteristics (e.g., chlorinated organics) elute off the top of the column, there is a decrease in free electrons in the ionization volume. The electronic circuitry of the ECD senses this and produces an output signal proportional to the concentration of electron absorbing molecules. TCE and PCE are both electron absorbing molecules and are therefore sensitive to ECD detection.

Compounds elute off the column after a specific retention time. The retention time is characteristic of the individual compounds for the specific column packing and column temperature used. As a compound elutes, the integrators record a peak. The area under the peak is proportional to the amount of compound eluting. The integrated area under the curve is compared to the peak area of a known concentration of gas (the standard gas) to arrive at the sample concentration.

A standard gas containing 60 ppm methylene chloride, 60 ppm TCE, and 60 ppm PCE, was obtained from Alphagaz, Inc., of Edison, New Jersey. This standard gas was used to confirm compound retention times and for daily calibrations of the GC. Calibration procedures are detailed in Section 4.0 Quality Control.

Detection limits achieved during this survey were approximately 10 ppb for TCE and PCE in the soil gas.

Three probes were sampled for analysis by an outside laboratory. Two liter samples were collected in glass sampling bulbs supplied by the laboratory. They were analysed by EPA Method 624 GC/MS for volatile organics by Enseco/Gollob Laboratory, Inc., of Berkely Heights, New Jersey. This was done to assess the possible presence of chemicals other than TCE and PCE.

4.0 QUALITY CONTROL

Quality control and assurance measures were taken during each phase of sampling activity. Of primary concern was ensuring probes, syringes, sampling heads, and any other sampling lines were free of contamination or chemicals which could interfere with the analysis. Careful decontamination procedures were followed to minimize such interference. Of equal concern was the accuracy of the field GC measurements. Sample analysis quality was confirmed by GC calibration by sample duplicate analyses.

4.1 DECONTAMINATION PROCEDURES

The syringes used were 100 microliter, glass, gas-tight with teflon plungers. Each syringe was tested for contamination (blanked) before every use. This was done by filling the syringe with pure nitrogen and injecting the nitrogen into the GC. The chromatogram was then studied to detect any residual contamination. If any significant residual contamination was detected, the syringe was placed in a heated, positive pressure, pure nitrogen gas line until an injection of pure nitrogen proved it free of significant contamination. The resulting chromatograms served as quality assurance documentation of syringe decontamination.

Probes and fittings used to construct the sampling heads were steam cleaned before use. This was done as a precaution since even trace amounts of cutting oils possibly used in machining could interfere with the analysis. After cleaning, probes were wrapped in foil and plastic sheeting in batches of ten. Before a batch of probes was used, one probe from the lot was removed for a system blank.

A system blank involves drawing an air sample through a probe and sampling head with a syringe in the same manner in which a soil gas sample is withdrawn. An unused sampling head is attached to an unused probe. The vacuum pump is attached to the vacuum port of the sampling head. After one half of the volume of the air in the probe is evacuated, a sample is taken through the septum port with a syringe. The air sample obtained is injected into the GC and the resulting chromatogram is studied for evidence of significant residual contamination or interference. The resulting chromatogram serves as quality assurance documentation of probe and sampling head decontamination.

A system blank was performed once on every batch of ten probes used. This resulted in a quality assurance documentation of ten percent of the materials used in sampling.

Six system blanks were run during the course of the soil gas survey and all proved to be free of significant contamination or interferences.

4.2 SAMPLE ANALYSIS

The GC was calibrated before and after sampling each day. Daily calibration curves were developed with the standard gas was supplied by Alphagaz, Inc. The concentration of the gas components was analyzed by Alphagaz, Inc. to two significant figures before being supplied for use.

Daily calibration curves were developed by injecting varying volumes of the standard gas into the GC. At least two injections each of three different volumes were performed at the beginning and end of the day to establish the curves. Sample gas peak areas were compared to the daily calibration curve to determine concentrations and levels of detection.

Of the sixty-four samples analysed, 12 were resampled resulting in a duplicate analysis proportion of 21 percent. The results are summarized on Table 1. Eight of the 32 samples in the North Disposal site were resampled three to five days after the initial sample. Four of the 32 samples in the South Disposal site were duplicated by withdrawing two syringes during sampling for duplicate analysis.

The four duplicate samples taken in the South Disposal site were from those probes located on the berm, F-15, G-16, J-19, and M-20. These were taken at the time of sampling because access to the berm was severely limited. Duplicate analysis was necessary to verify any anomalous readings. All four samples and duplicates were below method detection limits (BMDL).

The eight duplicate samples taken in the North Disposal site were taken at least three days after the original sample. Because soil gas flow is subject to daily atmospheric flux, direct comparison of sample concentrations taken days apart cannot be used to confirm GC analysis. Rather, sample duplicates of this nature were to confirm overall volatile organic distribution in soil gas over a large area.

Duplicate sampling in the North Disposal site confirmed overall contamination patterns and generally confirmed actual chemical concentrations. Most of the duplicate sample concentrations stayed within an order of magnitude. Exceptions were in TCE analysis which went down in four samples from between 130 - 170 ppb to trace concentrations (10 - 50 ppb) or BMDL. In one sample, H-5, TCE decreased from 600 ppb to 20 ppb. Only one PCE sample, F-6, decreased by an order of magnitude from 120 ppb to BMDL.

One TCE and one PCE duplicate went up slightly while all the other duplicate analyses stayed relatively the same.

5.0 RESULTS

Table 2 summarizes field GC analyses for TCE and PCE concentrations detected at probe locations sampled. Table 3 summarizes off-site laboratory analyses. Significant concentrations were found only in the North Disposal site. All probes sampled in the South Disposal site were below the method detection limit of 10 ppb for TCE and PCE However, a sample from the South Disposal site sent to an outside laboratory for confirmationally analysis, had a relatively high level of methylene chloride, which may have been a laboratory artifact.

Both disposal sites were surveyed along a 100-foot grid pattern. Lines of the survey which trended east-west, roughly parallel to the Christina River, were designated with numbers. The perpendicular lines of the survey, trending north-south, were designated with letters. Each sampling point is referred to by its letter and number coordinate. General concentration trends are referred to according to the grid line as a whole.

5.1 NORTH DISPOSAL SITE

Thirty-two probes were installed and sampled on the North Disposal site. PCE concentrations found on the North Disposal site are presented on Figure 3. TCE concentrations are presented on Figure 2.

PCE: The predominant pattern of PCE distribution is an area of high concentration, 2,000 ppb at C-6, which decreases by at least an order of magnitude in the surrounding probes. C-6 seems to be the center of an oblong, east-west trending plume extending along the 6 and 7 lines, between the B and F lines.

Two other areas of relatively high concentrations were detected at I-7 (650 and 200 ppb) and H-5 (4000 and 1900 ppb). There doesn't seem to be a distinguishable plume in these two areas and both readings stand out as anomalies. The remainder of the North Disposal site samples ranged in concentration from BMDL to 70 ppb.

In order to define more accurately the northern and western extent of the plume apparently centered at C-6, three additional probes were installed. These probes were installed in unsurveyed locations. There exact placement was limited by inaccessibility and shallow depth to groundwater. The northern most of the three was located approximately at grid location C-3. C-3 is located on a vegetated hill, northeast of the drainage ditch which surrounds the North Disposal site. Probe B-4/5 is located outside the North Disposal site fence on a slope leading down to the drainage ditch. Probe C/B-7 is also located within the landfill fence.

Probe C/B-7 had a PCE concentration of 340 ppb. This was similar to the nearest probes, B-6, 480 ppb, and D-7, 700 ppb. Probes B-4/5 and C-3 were BMDL and trace, respectively.

TCE: TCE concentrations, in general, were lower than PCE. As with PCE, relatively high readings were detected along the six line. Concentrations were 150 ppb at C-6, 340 ppb at D-6, and 280 ppb at E-6. They decreased eastward to trace concentrations at B-6, and westward to 130 and 110 ppb at F-6. TCE concentration increased farther west of F-6 to 420 ppb at G-6. The highest value was found at H-5, 600 ppb, but a duplicate analysis three days later showed 20 ppb.

Concentrations across the rest of the site varied from BMDL to 170 ppb in no discernable pattern. As with PCE, probes B-4/5 and C-3, installed northwest of the landfill, were BMDL for TCE.

5.2 SOUTH DISPOSAL SITE

Forty probes were installed on the South Disposal site. Probe locations are presented on Figure 3. Six probes were not sampled because the area surrounding them was fairly well defined by surrounding probe data. Two surveyed locations, L-16 and J-14, were also not sampled because of the shallow depth to groundwater. Water was drawn through probes I-13 and J-14.

None of the locations sampled showed TCE or PCE contamination above the method detection limit of 10 ppb. After reviewing data from the surveyed locations and taking into account that VOCs had been found in the four perimeter wells, an attempt was made to place probes in suitable locations on the southern and western portion of this site to identify contaminants in the soil gas near the wells. Probes were placed at G-11 and at 5 other locations along the berm shown on Figure 3. These five locations are designated according to the closest grid coordinate: E-14, F-15, G-16, J-19, and M-20. None of these samples showed TCE or PCE contamination above the detection limit.

5.3 CONFIRMATORY ANALYSES

Enseco/Gollob Laboratory analysed three gas samples, two from the North Disposal site, C-6 and H-5, and one from the South Disposal site, I-12. Results are presented on Table 3. The laboratory report is presented in Appendix G-1.

The analyses were conducted according to EPA Method 624 GC/MS for volatile organics. Detection limits for this analysis are 200 ppb for most chemicals. These are higher than those achieved in the field. However, the number of chemicals analysed for and the reliability of the method made it the analysis of choice.

In the two samples collected in the North Disposal site, methylene chloride was detected at 36,000 ppb in C-6 and 2,000 ppb in H-5. C-6 had a PCE concentration of 2,000 ppb in the field analysis and 700 ppb in the laboratory analysis. H-5 had a PCE concentration of 4,000 and 1,900 ppb in the field analysis and 200 ppb in the laboratory analysis. In addition,

benzene was detected in H-5 at 200 ppb and trifluorochloromethane was detected at 200 ppb in C-6.

One sample, I-12, was collected in the South Disposal site. In sample I-12 laboratory analysis detected 6,000 ppb methylene chloride. No other volatile organics were detected above 200 ppb.

6.0 CONCLUSIONS

Delineation of PCE and TCE vapors in the vadose zone was accomplished at both sites within the limitations of the method detection limit of 10 ppb. No TCE or PCE vapors were detected in the South Disposal site above the method detection limit.

PCE and TCE are similarly distributed in the North Disposal site. There is a relatively high concentration centered around C-6 extending primarily east-west for several hundred feet. According to laboratory analysis, methylene chloride, benzene, and trifluorochloromethane are also present in the vadose zone.

While methylene chloride is a common laboratory artifact, there is no indication of methylene chloride contamination in the laboratory method blank. Methylene chloride was not targeted for soil gas analysis because available information showed that it was unlikely to have been disposed of in process wastes, and because it was found in very low concentrations in relatively few well samples.

Because the standard gas used contained methylene chloride, its retention time was documented. Upon review, several sample chromatograms recorded significant peaks with the same retention time as methylene chloride. However, column conditions allowed for interference by many other compounds; resulting peaks could represent one or a combination of chemicals. Because of this possible interference, the presence of methylene chloride and its possible concentration could not be confirmed.

-12-

Although there are only three laboratory samples which indicate methylene chloride, the location of the sampling points and the concentrations detected suggest that a source of methylene chloride may be present upgradient of, or on one or both disposal sites.

The concentrations of PCE and TCE detected in the soil gas on the North Disposal site indicate that a source of both chemicals is present in or upgradient of the North Disposal site. However, because of heterogenous nature of the North Disposal site vadose zone, a definite source location and concentration or migration pattern cannot be defined with precision. For the same reason, it is not possible to determine to what extent, if any, the source or sources of soil gas contamination are related to groundwater transport.

Tables

TABLE 1 SUMMARY OF DUPLICATE SAMPLE ANALYSES

Sample	Trichloro- ethylene	Tetrachloro- Ethylene	Sample Date	
NORTH DISPOSAL SITE				
E-4	BMDL	Trace	6/25	
E-4 (Dup)	BMDL	BMDL	6/29	
F-6	130	120	6/25	
F-6 (Dup)	110	\mathtt{BMDL}	6/29	
G-5	140 ·	70	6/26	
G-5 (Dup)	Trace	Trace	6/29	
G-7	150	Trace	6/26	
G-7 (Dup)	Trace	Trace	6/29	
H-5	600	4,000	6/26	
H-5 (Dup)	20	1,900	7/01	
H-6	130	BMDL	6/26	
H-6 (Dup)	BMDL	BMDL	6/29	
H-7	BMDL	BMDL	6/26	
H-7 (Dup)	65	Trace	6/29	
I-7	170	200	6/26	
I-7 (Dup)	BMDL	650	6/29	
SOUTH DISPOSAL SITE				
F-15	BMDL	BMDL	7/01	
F-15 (Dup)	\mathtt{BMDL}	${ t BMDL}$	7/01	
G-16	BMDL	BMDL	7/02	
G-16 (Dup)	\mathtt{BMDL}	BMDL	7/02	
J-19	\mathtt{BMDL}	BMDL	7/02	
J-19 (Dup)	BMDL	BMDL	7/02	
M-20	BMDL	BMDL	7/02	
M-20 (Dup)	BMDL	BMDL	7/02	

Notes: All units parts per billion (ppb).

> Trace amount quantifiable only to between 10 and 50 ppb. Below Method Detection Limit of 10 ppb. Trace

BMDL =

TABLE 2 SOIL GAS SURVEY RESULTS FOR NORTH DISPOSAL SITE

	CHEMICAL CON				
Sample	Tetrachloroethylene	Trichoroethylene	Date Sampled	Probe Depth*	
B-4/5	BMDL	BMDL	6/29		
B-6	480	Tr	6/29		
C-3	${f Tr}$	110	6/29		
C-5	BMDL	BMDL	6/29		
C-6	2,000	150	6/25	4.5 ft	
C/B-7	340	90	6/29		
D-3	Tr	65	6/29		
D-4	Tr	Tr	6/29		
D-5	Tr	BMDL	6/29		
D-6	210	340	6/26		
D-7	700	BMDL	6/29		
E-3	BMDL	95	6/25		
E-4	Tr	BMDL	6/25		
E-4 (Dup)	BMDL	BMDL	6/29		
E-5	${ m Tr}$	130	6/25		
E-6	700	280	6/25		
E-7	Tr	95	6/25		
F-3	Tr	Tr	6/29		
F-4	Tr	BMDL	6/29		
F-5	BMDL	BMDL	6/29		
F-6	120	130	6/25	3.5 ft	
F-6 (Dup)	BMDL	110	6/29	3.5 ft	
F-7	BMDL	${ t Tr}$	6/25		

NOTES: All units are parts per billion (ppb).

Tr Trace Amount - quantifiable only to between 10 and 50 ppb BMDL Below Method Detection Limit of 10 ppb. (Dup) Duplicate Sample

^{*} Five feet unless otherwise stated.

TABLE 2 (Continued)

	CHEMICAL CON	Ti.		
Sample	Tetrachloroethylene	Trichoroethylene	Date Sampled	Probe Depth*
G-4	BMDL	Tr	6/29	
G-5	70	140	6/26	
G-5 (Dup)	Tr	${f Tr}$	6/29	
G-6	60	420	6/26	4 ft
G-7	${f Tr}$	150	6/26	3 ft
G-7 (Dup)	Tr	Tr	6/29	3 ft
H-5	4,000	600	6/26	
H-5 (Dup)	1,900	20	7/01	
H-6	BMDL	130	6/26	
H-6 (Dup)	\mathtt{BMDL}	\mathtt{BMDL}	6/29	
H-7	BMDL	BMDL	6/26	
H-7 (Dup)	Tr	65	6/29	
I-5	80	BMDL	6/29	
I-6	Tr	140	6/26	
I-7	200	170	6/26	3 ft
I-7 (Dup)	650	BMDL	6/29	3 ft
J-6	BMDL	120	6/26	3 ft

NOTES: All units are parts per billion (ppb).

Tr Trace Amount - quantifiable only to between 10 and 50 ppb BMDL Below Method Detection Limit of 10 ppb. (Dup) Duplicate Sample

^{*} Five feet unless otherwise stated.

TABLE 3 COMPARISON OF FIELD AND LABORATORY ANALYSES

2 4 (7 + 17 G144)					
C-6 (Lab ID: G126)	Gollob Laboratories	Field GC			
Methylene chloride	36	NA			
Fluorotrichloromethane	200 (DL)	NA			
Tetrachloroethane	700	2,000			
Trichloroethylene	BMDL (200)	150			
		i.			
H-5 (Lab ID: G057)					
Methylene chloride	2,000	NA			
Benzene 200 (DL)	NA				
Tetrachloroethene	200 (DL)	4,000/1,900*			
Trichloroethylene	BMDL (200)	600/2-*			
I-12 (Lab ID: G306)					
Methylene chloride	6,000	NA			

BMDL (200

BMDL (200)

Note: All units in parts per billion (ppb).

Tetrachloroethylene

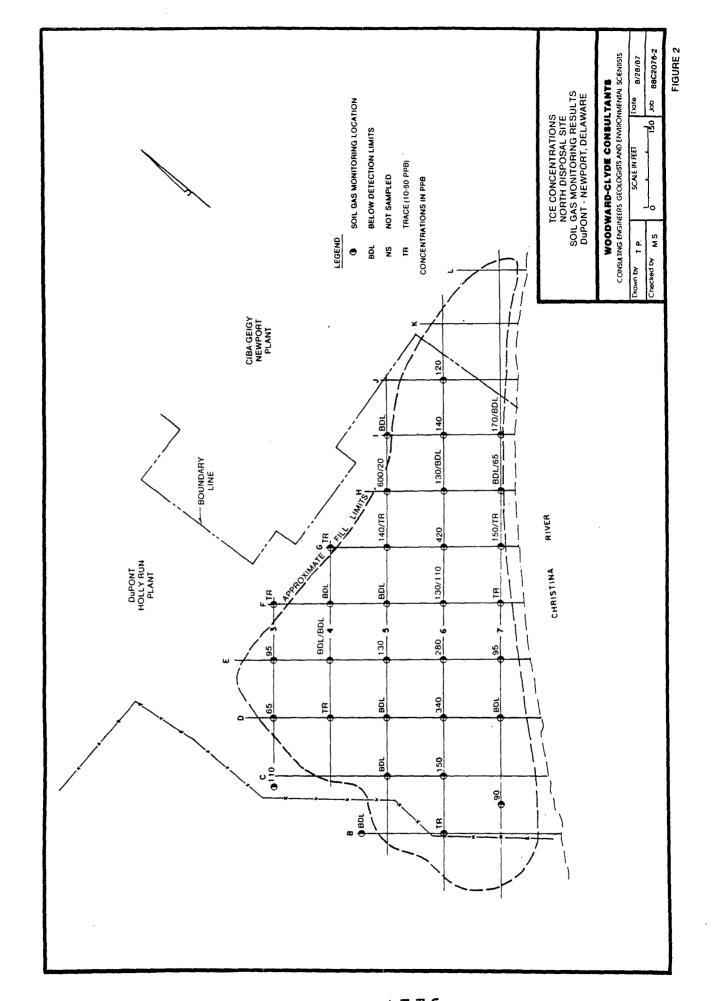
Trichloroethylene

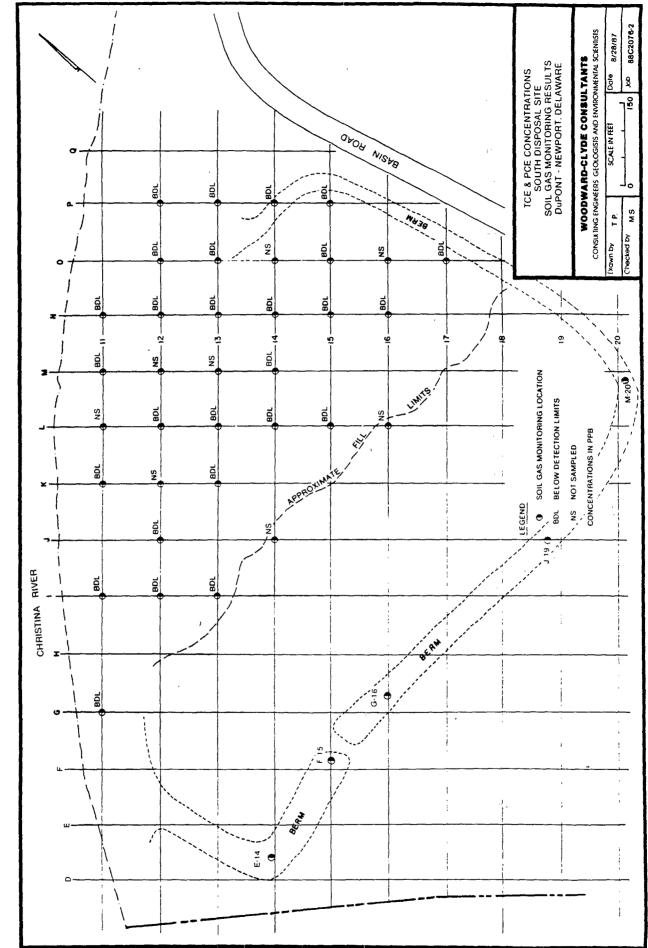
DL = also the method detection limit

NA = not analyzed

BMDL = Below Method Detection Limit. The method detection limit

is in parantheses.


* Second number is the result of duplicate analysis.


WM-44I

BMDL (10)

BMDL (10)

Figures

Appendix G-1

LABORATORY ANALYSES

Gollob Analytical Service

MOLININI/GOLLOB (A DIVISION OF) ENSECO (INCORPORATED)

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 • TEL. (201) 464 3331

TO Ms. Mary K. Stevenson Woodward-Clyde Consultants 201 Willowbrook Blvd. Wayne, NJ 07470

G.A.S. REPORT No. 64390

Date Requested: 7/17/87 Date Reported: 8/5/87 87C2665-2C P.O. No.

MATERIAL SUBMITTED.

3 (Three) Gas Samples

INFORMATION REQUESTED: Organic Mass Spectrometry II Analysis

NOTEBOOK REFERENCE:

GC/MS 1307, Pg. 32

RESULT OF INVESTIGATION

Subject samples have been analyzed by purge and trap gas chromatography/mass spectrometry for volatile priority pollutant constituents.

Results are reported in the attached table. Copies of the chromatograms, spectra and request forms are enclosed.

Results reported 7/31/87.

Pg. 1 of 2 n 8587

LÍQUID CHROMATOGRAPHY

Volatile Organic Analysis by GC-MS

Sample Identification:	C-6	u_c	I-12			T	T						
Pollutants	<u> </u>					1							
Chloromethane	G1.26	G057	G306										
Bromomethane													
Vinyl Chloride													
Chloroethane													
Methylene Chloride	36	2	6					1	1				
Trichlorofluoromethane	0.2								1				
1,1,-Dichloroethylene	1										1		
1,1-Dichloroethane									1				
1,2-Dichloroethylene							İ					İ	
Chloroform						1			1				1
1,2-Dichloroethane	İ	1											.
1,1,1-Trichloroethane			1				1	}	1			1	1
Carbon Tetrachloride		1						1			-		
Bromodichloromethane				1					1	1	İ	1	
1,2-Dichloropropane													
trans-1,3-Dichloropropene									İ		İ		
Trichloroethylene						-							
Benzene	ł	0.2	2										
Dibromochloromethane		1	1			-	1		1		1	1	
cis-1,3-Dichloropropene			1							1			
1,1,2-Trichloroethane		1						1			1		
2-Chloroethylvinyl Ether								1					
Bromoform						l				1			
1,1,2,2-Tetrachloroethene	0.	7 0.:	2					1			1		-
1,1,2,2-Tetrachloroethane													}
Toluene	1	1				١					1		
Chlorobenzene												Ì	
Ethylbenzene						-			1			1	
1,3-Dichlorobenzene								-					
1,2 & 1,4-Dichlorobenzene					.								
Detection Threshold = 0.2 ppm by Volume													
	-						-	1					
		•						I.					

The data reported here meets or exceeds Enseco/Gollob's in-house QA/QC program modelled after those established by state and federal agencies. The data, however, is intended for the client's information purposes only and should not be used for submissions in response to state or federal regulations.

GOLLOB ANALYTICAL SERVICE 47 INDUSTRIAL ROAD BERKELEY HEIGHTS, N.J. 07922 (201) 464-3331 FAX (201) 464-7740

GOST 1Liter

REQUEST FOR ANALYTICAL SERVICES

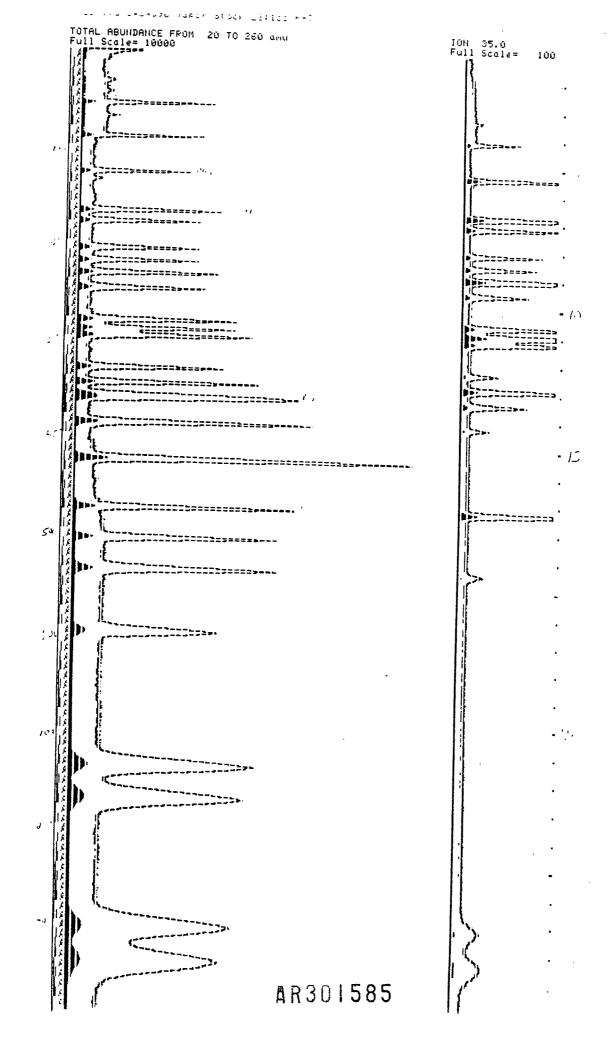
DISCUSSED WITH LEO SAMUES AT G.A.S. DATE DISCUSSED 7/14 and 6/2
HUHBER OF SAMPLES
SAMPLE DESCRIPTION & SAMPLE IDENTIFICATIONS
Gas Sample, our ID# 41-5
Gas Sample, our ID# H-5 Sample Date 15 July 1987
Sample reace 12 - July 12
SAMPLE HAZARDS & PRECAUTIONS
possebly 1/0 ppm PCE + 1CE
possibly 1/0 ppm PCE+TCE Continue on other side if needed ANALYSIS DESIRED (CONSTITUENTS, DETECTION THRESHOLD, METHOD)
624 GCMS - Volatile Organic analysis
PRICES PLEASE QUOTE PRICES WERE QUOTEDVERBALLY IN WRITING
PLEASE PROVIDE PRIORITY SERVICE
SAMPLE DISPOSITION RETURN DISCARD_X CARRIER/ACCT.#
REPORT RESULTS TO
Maria X Storenson
116d d CO de C 17.0,1 87C2665-26
COMPANY MOOUWANA Clyde Consultants Mary Tevenso
ADDRESS OF WILLOWTOOK SLUA. PRINT NAME MARKY STEVENSON
Wayne, W 07470
PHONE # (201) 785-0700
FAX PHONE #
CALL WITH RESULTS FAX RESULTS

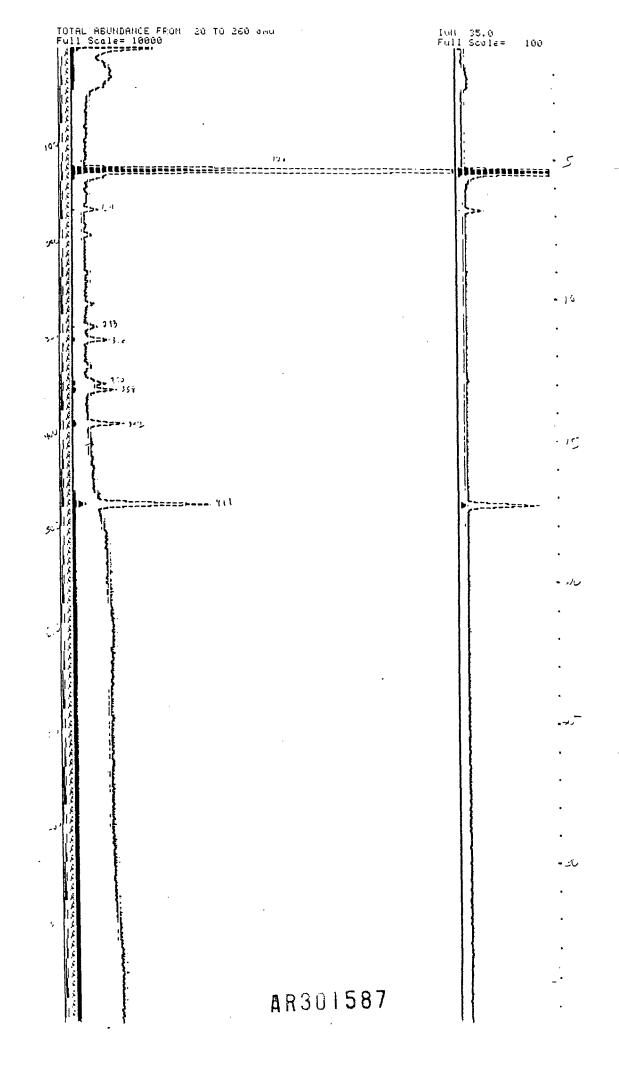
GOLLOB ANALYTICAL SERVICE 47 INDUSTRIAL ROAD BERKELEY HEIGHTS, N.J. 07922 (201) 464-3331 FAX (201) 464-7740

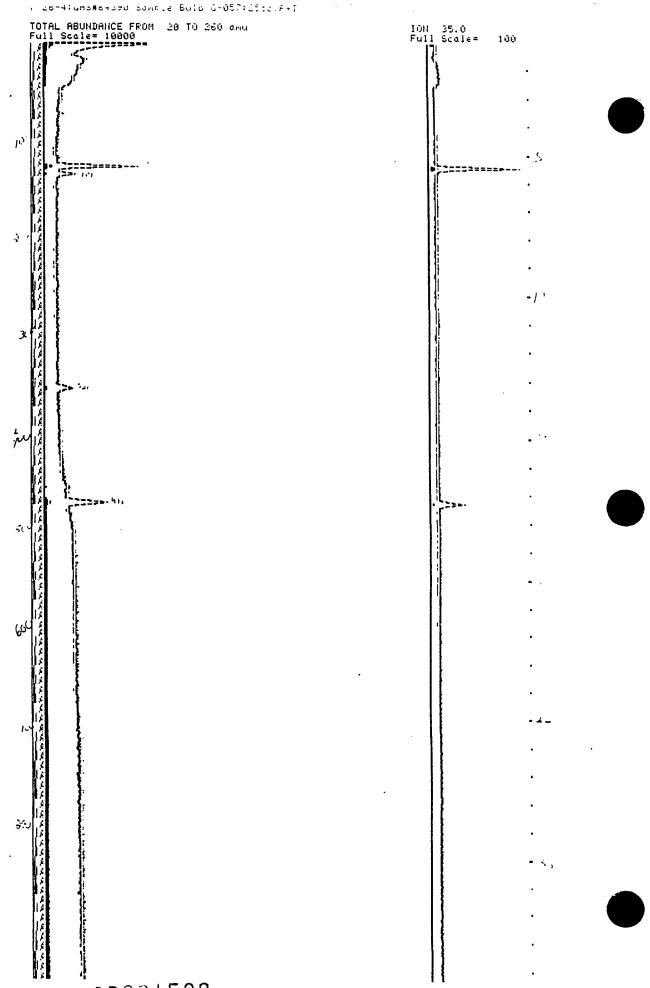
> G126 1 Liter Evacuat

REQUEST FOR ANALYTICAL SERVICES

DISCUSSED WITH LEO Samuelo AT G.A.S. DATE DISCUSSED 7/14 prod 6/2
NUMBER OF SAMPLES
SAMPLE DESCRIPTION & SAMPLE IDENTIFICATIONS
Gas Sample, our ID# C-6 Sample blate 15 July 1987 SAMPLE HAZARDS & PRECAUTIONS
SAMPLE HAZARDS & PRECAUTIONS
Possibly ~10 ppm TCE+PCE Continue on other side if needed
ANALYSIS DESIRED (CONSTITUENTS, DETECTION THRESHOLD, METHOD)
EPA Method 624 GCMS Volatile
Organic
lnalyees
PRICES PLEASE QUOTE PRICES WERE QUOTEDVERBALLY IN WRITING
PLEASE PROVIDE PRIORITY SERVICE (SURCHARGE 50% TO 100%)
SAMPLE DISPOSITION RETURN DISCARD CARRIER/ACCT.#
REPORT RESULTS TO
NAME Mary X Stevenson
COMPANY Toodward-Cliple Consultants P.O. 1 87C2665-2C
ADDOSCO DOL TILLE SIGNATURE SIGNATURE
Warne NIT 07470 PRINT NAME MARY SIEVENSON
PHONE # (201) 785-0700 DATE 15 July 1987
FAX PHONE #
CALL WITH RESULTS FAX RESULTS


GOLLOB ANALYTICAL SERVICE 47 INDUSTRIAL ROAD BERKELEY HEIGHTS, N.J. 07922 (201) 464-3331 FAX (201) 464-7740


630 le 1 Liter Eu


REQUEST FOR ANALYTICAL SERVICES

DISCUSSED WITH LEO SAMUELS AT G.A.S. DATE DISCUSSED 7/14 and 6/2
NUMBER OF SAMPLES
SAMPLE DESCRIPTION & SAMPLE IDENTIFICATIONS
Gas Sample, our ID# I-12
Gas Sample, our ID# I-12 Sampled date 15 July 1987
CAMPLE HATARE & DECAUTIONS
Possibly NIO John TCE+PCE Continue on other side if needed ANALYSIS DESIRED (CONSTITUENTS, DETECTION THRESHOLD, METHOD)
ANALYSIS DESIRED (CONSTITUENTS, DETECTION THRESHOLD, METHOD)
EPA Method 624 GCMS Volatile Organi Analysis
PRICES PLEASE QUOTE PRICES WERE QUOTEDVERBALLY IN WRITING
PLEASE PROVIDE PRIORITY SERVICE (SURCHARGE 50% TO 100%)
SAMPLE DISPOSITION RETURN DISCARD CARRIER/ACCT.#
REPORT RESULTS TO
the sound
COMPANY Moodward Chyde Consultants P.O. 1 87C2665-26
3. 1:10 Mg Signature Marin Scenerio
Wayne 11.T 57470 PRINT NAME MARY K. STEVENSON
PHONE # (281) 785-0700 DATE 15 July 1987
FAX PHONE #
CALL WITH RESULTS FAX RESULTS

AR301584

AR301588

AR301589

```
TOTAL ABUNDANCE FROM 20 TO 260 and Full Scale= 10000
                                                                                     10h | 35.0
Full Scale=
                                                                                                         100
                                                                                                                - IÚ
 SCANAC PROGRAM [Rev 3/81]
 SCANAC PROGRAM [Rev 3/81]
 >> CURRENT GC CONDITIONS: Oven=215.5 Inj. Port =226.0 Retention time= 25.7
 East spectrum recorded was 460.122 Total Available = 609 Next spectrum recorded will be 1.122
  Last spectrum recorded on master was 165.001
                                                                 Total Available = 166
 Next spectrum recorded on master will be 1.001
  ** CONDITIONS FOR RUN #
                                         9 dated: 7/28/1987 Tuesday
  TEMP1 TIME1 RATE TEMP2 TIME2 INJ. FORT MAX. OVEN SOLVENT RUN TIME
                                      Bes.
225
                                                Min.
                                                                         De 9.
                                                                                       Min.
                                                                                                     Min.
      50
              0.0
                      10.0
                                                32.0
                                           20.0 linear counts
  MS PEAK DETECT THRESHOLD =
 MS PERK DETECT THRESHOLD = 20.8 linear counts
FLOW RATE = 30 mi/min
SAMPLES PER .1 AMU = 8 SCAN SPEED = 200 amurisec
ELECTRON MULTIPLIER = 2008 volts
GC PERK DETECT THRESHOLD = 1000 TRIGGERED ON TOTAL ABUNDANCE
BETWEEN SCAN DELAY = 0.500 seconds when saving all spectra.
Only stripped spectra recorded in PEAKFINDER mode.
Begin run SAVING ALL SPECTRA.
  SAMPLE IDENTIFICATION_____
  OPPERATOR_____
  7/28-9:GRS#64390 Vapor Std. 28:25cc P+T
                                                                                                           100
```

TOTAL ABUNDANCE FROM 20 TO 260 and R 30 1591

IUN 35.0 Full Scale=

Appendix H

Ground Radiometrics Survey
DuPont Newport Site
Newport, Delaware

Woodward-Clyde Consultants

TABLE OF CONTENTS

																						Page	Num	be
1.0	DATA	OBJECT	IVES.				•		•		•		•	•	•	•		•	•	•			1	
	1.1	THORIU	M WA	STE I	DISP	OSA	L.			•		•	•	•	•	•	•	•	•	٠	•		1	
	1.2	PREVIO					•				•	•		•			•	•					1	
	1.3	SCOPE	OF WO	RK.			•		•		•			•	•	•	•	•	•		•		2	
2.0	тесн	NICAL A	PPRO	ACH			•			•	•	•	•	•	•	•	•		•	•	•		3	
	2.1	RECON	NAISSA	ANCE	SUI	RVE	Y.			•		•		•			•	•		•	•		3	
	2.2	GAMMA SURVEY					•		•	•	•		•	•	•	•	•			•			4	
		2.2.1	METH	ODO	LOC	Y.	•		•	•		•	•	•	•	•	•		•	•	•		4	
		2.2.2	RADI	OME'	TRIC	MA	APS	• •	•	•	•	•	•		•	•	•	•		•	•		5	
3.0	INTE	RPRETAT	'ION O	FRE	SUL'	rs.	•		•	•			•	•	•	•	•		•				6	
4.0		CLUSIONS		s			•									•		•			•		6	

Woodward-Clyde Consultants

LIST OF TABLES

SUMMARY OF BACKGROUND GAMMA RADIATION, NEWPORT LANDFILL, DELAWARE	Table Number								
LIST OF FIGURES									
	Figure Number								
SCHEMATIC DIAGRAM OF THORIUM WASTE DISPOSAL HOLES	1								
MAP OF NORTH DISPOSAL SITE SHOWING SUSPECTED THORIUM WASTE BURIAL AREA	2								
TOTAL COUNT CHANNEL DATA	3								
URANIUM CHANNEL DATA	4								
THORIUM CHANNEL DATA	5								
CONTOUR MAP - TOTAL COUNT	6								
CONTOUR MAP - URANIUM CHANNEL	7								
CONTOUR MAP - THORIUM CHANNEL	8								
APPENDICES									
	Appendix								
RADIOMETRIC SURVEY PROCEDURES	H-1								

1.0 DATA OBJECTIVES

A ground radiometric survey was conducted at the North Disposal site to verify that gamma radiation emanating from the landfill does not exceed background levels. To provide a basis for this survey, an investigation of thorium disposal records and previous surveys was conducted prior to outlining the scope of work.

1.1 THORIUM WASTE DISPOSAL

From 1961 to 1968, the Newport plant manufactured a thoriated nickel alloy that was used in the manufacture of supersonic jet engines. The alloy consisted mostly of nickel, some chromium and molybdenum, and small quantities of thorium (2 to 5 percent). Solid and semi-solid waste material from this process (approximately 20 tons) was buried in the North Disposal site in accordance with federal regulations in effect at that time. The estimated weight of thorium dioxide disposed is between 0.4 and 1 ton. The thorium waste was placed in jars that were subsequently placed in 55 gallon barrels together with disposable protective clothing and debris from the waste handling operations. The barrels were placed in "holes" or small excavations which are nominally at depths up to 10 feet below the present land surface of the landfill (Figure 1). The upper 2 feet consists of a protective clay cap.

The number and locations of disposal "holes" at the North Disposal site are unknown. Based on existing plant records the location of buried thorium waste is within the area shown on Figure 2, but precise locations are not known.

1.2 PREVIOUS RADIOMETRIC SURVEYS

During 1979 and 1980, Du Pont conducted at least two radiometric surveys using a Victoreen 471 radiation meter (Geiger counter). The survey results in each case indicate no sustained readings above background levels measured in a city park approximately 1 mile from the landfill.

Recent chemical analyses of groundwater from a depth of 20 to 25 feet in monitoring well SM-4 (Figure 2) yielded Radium-228 and gross alpha concentrations slightly

Woodward-Clyde Consultants

above drinking water standards (40 CFR Part 141.15). Radium 228 is a daughter isotope from the decay of thorium-232.

1.3 SCOPE OF WORK

The background information previously discussed indicates that records showing accurate locations of buried thorium waste are lacking. Moreover, past reconnaissance surveys of radioactivity emanating through overburden do not indicate levels elevated above background, and thus it is not possible to detect the specific source areas from these data.

To verify that anomalously high levels of gamma radiation from the buried thorium waste sources is not emanating from the North Disposal site, a ground radiometric survey was proposed and conducted. At the time this work task was proposed, the available information suggested the waste was buried between grid coordinates E6:E7 and G6:G7 (Figure 2). Information from plant records following completion of the survey revealed that the waste is buried as shown on Figure 2. Due to field conditions at the time, the survey we conducted along the grid lines as marked in the field (Figure 2). Although the radiometric survey did not cover the entire stippled area on Figure 2, a portion of it was covered, and there appears to be a high probability that thorium waste is buried beneath the area covered by the survey.

The ground radiometric survey was performed between June 19 and June 30, 1987 utilizing a portable gamma-ray spectrometer. This type of instrument was chosen for several reasons. First, thorium-232 decays to its daughter isotopes yielding alpha, beta, and gamma radiation. Second, gamma radiation is the only one of these three which is potentially capable of penetrating more than several feet of overburden because it is characterized by very high energy, and it has no mass and no electric charge to interact with ions in the ground. Third, unlike a scintillometer, the gamma spectrometer is able, under certain conditions, to distinguish the individual contribution of uranium, thorium, and potassium to the total radiation count. This instrument is commonly used in exploration work for assays of natural

concentrations of uranium, thorium, and potassium in underlying rocks and soils. Therefore, a portable gamma-ray spectrometer survey should indicate whether anomalous gamma radiation characteristic of energy levels associated with decay of thorium (i.e., above background levels) are present.

The scope of the radiometric survey was divided into three parts. The first part involved a reconnaissance survey using a Ludlum radiation meter (Geiger counter) to evaluate the site entry risk to field personnel. Following the reconnaissance survey, systematic traverses with the gamma spectrometer were conducted along grid lines (Figure 2) laid out by professional surveyors. Third, the data were reduced and kriged for contouring purposes, and computer-drawn contour and data maps prepared. The survey and results are discussed in greater detail in Section 2.0 (Technical Approach).

2.0 TECHNICAL APPROACH

2.1 RECONNAISSANCE SURVEY

In accordance with the provisions of the Health and Safety Plan for the remedial investigation at the Newport Landfill, an initial reconnaissance survey was carried out over the North Disposal site. The survey was conducted using Ludlum Model 3 and 5 radiation survey meters. The purpose of the survey was to establish, prior to site entry by field personnel, that radiation emanating from the North Disposal site was not a threat to human health. The action levels established by the plan indicate that if radiation levels were less than 0.08 millirems per hour (mR/hr), work could be performed without a dosimeter. If radiation exceeded 0.08 mR/hr and did not exceed 0.3 mR/hr, dosimeter badges were required of all personnel. Levels exceeding 0.3 mR/hr would require site evacuation.

The reconnaissance survey began randomly over the site area to confirm that conditions were safe for surveyors to lay-in grid lines spaced 100 feet apart. When this was completed, reconnaissance traverses were performed along the survey grid. The results of these surveys indicated that radiation levels occasionally fluctuated for brief periods above

0.08 mR/hr but were not sustained. For safety monitoring, all personnel on the North Disposal site wore dosimeter badges during the program. Additionally, a radiation meter was monitored during the gamma spectrometer survey. The average daily sustained reading from the meter was consistently below 0.08 mR/hr.

2.2 GAMMA SPECTROMETER SURVEY

2.2.1 METHODOLOGY

The field radiometric survey was conducted with a portable Scintrex GAD-6 four channel gamma-ray spectrometer utilizing a GSP-3 sensor with a sodium-iodide crystal. The spectrometer electronically sorts incoming gamma rays by their different natural energy levels and thus provides separate count rates of gamma activity for decay of thorium, uranium, and potassium.

The procedures used during this task are presented in Appendix H-1. The principal survey objectives were to evaluate whether the buried thorium waste is emittin detectable gamma radiation and, if so, whether or not the source areas can be located.

The first step in the survey was to establish background levels and determination of the optimum counting time per station. Three background stations (Nos. 1, 2, and 3, Figure 2) were monitored to the north and west of the North Disposal site at each station, the number of counts in all four channels was recorded during 100, 300, and 1000 second periods corresponding to the settings on the spectrometer. At all three stations, however, the relative difference in the number of disintegrations counted for 300 seconds and 1000 seconds was small compared to 100 seconds. Therefore, a 300 second sample time was utilized at each station throughout the survey. Table 1 lists the background readings for 300 seconds.

The position of the sensor during the field survey determines the number of gamma rays that can effectively be received by the instrument. Ground surface relief and the desired depth of investigation must be considered in determining the optimum height for the

sensor during the survey. The North Disposal site has essentially very little topographic relief that would cause variations in the count rate. Nevertheless, the maximum depth that the detector can detect for thorium-232 is several feet when the detector is placed directly on the ground. In this configuration, the radiation recorded comes from a volume of soil within a sphere up to ten feet in diameter, and a depth of about 3 to 4 feet. Raising the detector off the ground, reduces the depth of investigation and increases the ground surface area contributing radiation to the sensor. The survey traverse lines are 100 feet apart, and stations along these lines are 25 feet apart. Thus, holding the detector at a nominal height of 1 to 2 feet provides sufficient overlapping coverage between stations.

The field survey was conducted first along the north-south grid lines. When these lines were completed, traverses were made along the east-west lines. Duplicate readings were taken at many of the 100 foot nodal intersections as a check on repeatability.

2.2.2 RADIOMETRIC MAPS

Figures 3, 4, and 5 depict the number of counts at each grid station for the total count, uranium, and thorium channels. These data were reduced by taking the standard deviation of each reading. The data for each channel were then contoured as depicted in Figures 6, 7, and 8. Interpreted anomalous areas on the contour maps are shown also.

Very few anomalous areas of elevated radiation are noted. The thorium channel (Figure 8) revealed a slightly elevated area across the southern end of the survey area. This area is roughly parallel to the river. However, the anomalies in the area of suspected waste burial do not appear to exceed those in other areas of the North Disposal site where no thorium waste is suspected. A similar broad area of slightly elevated radiation was detected by the uranium channel (Figure 7) in the same portion of the survey area as revealed by the thorium data. The anomalous areas on this map are broader but the gradients are very gentle. The map of total count (Figure 6) is consistent, and also reveals a slightly anomalous area also with gentle gradients in the vicinity of the northern apex of the North Disposal site. An isolated anomaly (3-4 percent) with an apparently steep gradient at E4 is not apparent in the uranium and thorium channel maps.

-6-

3.0 INTERPRETATION OF RESULTS

In the area where thorium waste appears to be buried (Figure 2), the total gamma radiation maps suggest slight anomalies are detected. However, the data in Figure 7 suggest that much of this response can be attributed to the presence of uranium-238 within the volume of earth sampled at each station. Although the contribution of radioactive potassium to the total count was not evaluated, it is possible that the presence of micas in the sediments may also contribute to the total gamma radiation at the site. The gradients expressed by the contour maps are gentle and radiation levels are only slightly above background. The likelihood that these anomalies represent a buried radioactive source is low.

From plant records, the thorium waste is buried approximately 10 feet below the landfill surface. This information, together with the fact that there is a 2-foot-thick clay cap covering the waste materials, suggests that the distribution of anomalies may actually reflect variations in the composition and thickness of the cap across the landfill. This interpretation is supported by the apparent similarity of Figures 7 (uranium) and 8 (thorium).

4.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the ground radiometric survey at the North Disposal site may be summarized as follows:

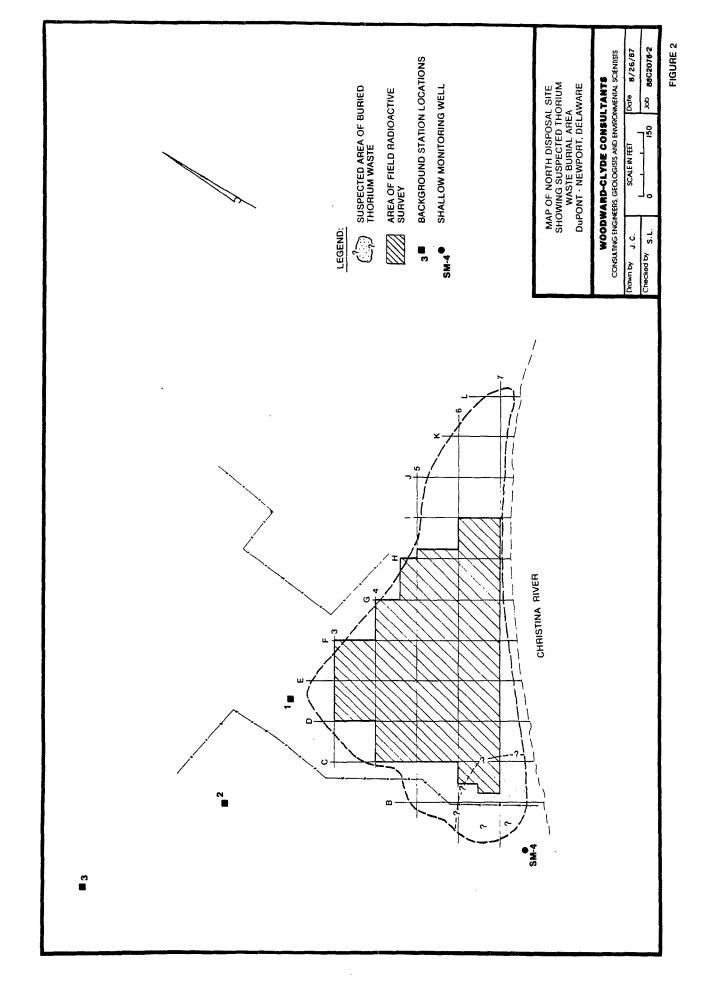
- Measured gamma radiation levels across the North Disposal site are generally the same as background levels.
- 2. Minor anomalies are present, but they are only slightly above background and have gentle gradients.
- 3. Minor anomalies occur across the southern end of the landfill and in the northern apex area. Some do occur within the zone where thorium waste is believed buried (Figure 2), but they are not unique to this zone.

4. Minor anomalies are detected in both the uranium and thorium channel data in the zone where thorium waste is buried. The contribution of uranium at the same locations of thorium anomalies suggests that the thorium waste is buried too deep to be detected by the spectrometer.

Although the field survey did not cover the entire area of suspected radioactive waste disposal, and the detector was not placed directly on the ground surface, further ground radiometry may not be conclusive.

WM-44I

Tables


TABLE 1
SUMMARY OF BACKGROUND GAMMA RADIATION
NEWPORT LANDFILL
NEWPORT, DELAWARE

		RADIOMETRIC COUNT (300 sec)												
Date	Station No.	TC	K	U	Th									
6/24/87	1	84,199	1621	410	310									
		83,306	1595	442	322									
	2	93,289	1731	624	521									
		87,475	1625	598	455									
	3	88,177	1643	431	329									
6/27/87	3	85,761	1783	495	328									
		85,512	1713	462	342									
		86,136	1698	453	358									
6/18/87	1	85,511	1691	532	454									
		85,668	1760	531	352									
6/19/87	1	86,184	1679	584	451									
		85,840	1858	518	414									
		86,342	1771	555	470									
		85,646	1842	511	479									
6/30/87	1	86,021	1826	528	445									
		85,660	1707	520	425									
		86,643	1610	595	410									
		93,112	1559	702	458									
		89,836	1659	667	397									
	Mean	86,859	1704	535	406									
	Std. Dev.	2,548	84	77	61									

WM-44I

Figures

CLAY CAP-2 FT. (VARIABLE THICKNESS) MINIMUM 4 FT. 2 FT. 55 GAL. BBL. SOURCE OF INFORMATION: E. I. du PONT de NEMOURS & Co.,Inc.(unpublished) SCHEMATIC DIAGRAM OF THORIUM WASTE DISPOSAL HOLES **DUPONT - NEWPORT, DELAWARE**

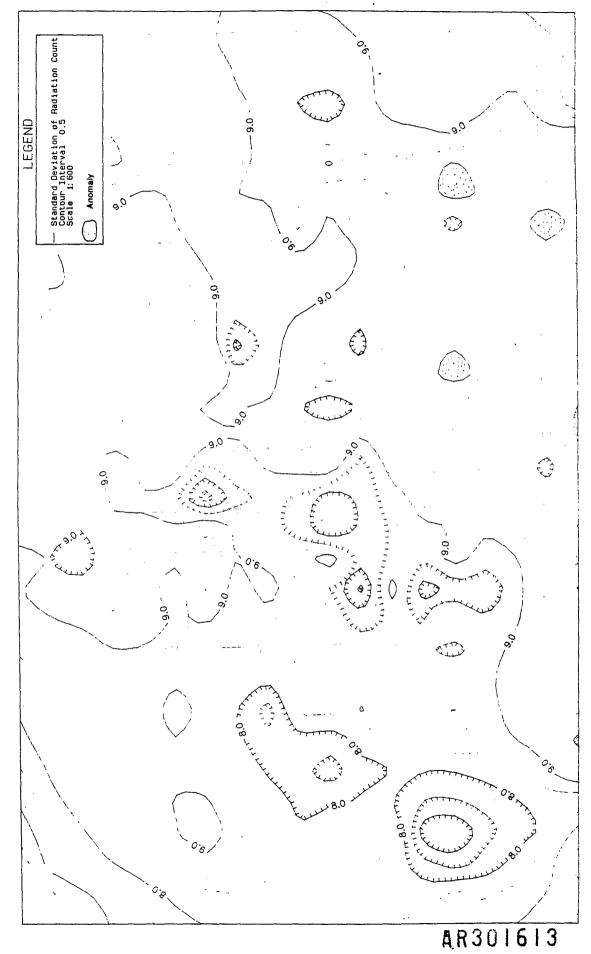
AR301607

Total

AR301608

channel

cadnnel


AR301610

Uraniu Channel

AR301611

Total

AR301612

lanne

Thorium

Appendix H-1

APPENDIX H-1

PROCEDURE FOR PERFORMING THE GAMMA RAY SURVEY AT DU PONT'S NEWPORT, DELAWARE FACILITY

BACKGROUND

A gamma ray survey will be performed at the Du Pont Holly Run Plant located in Newport, Delaware. The facility has two disposal areas, referred to as the northern and southern disposal areas, that are separated by the Christina River. Thorium dioxide, a radioactive substance, has been buried in a few locations in the northern disposal area, and is the subject of this survey.

OBJECTIVES

This survey has two objectives; the identification of areas where thorium dioxide has been buried in the northern disposal area, and an evaluation of whether gamma radiation related to the buried thorium is penetrating the landfill cover. The survey is designed to identify anomalous areas and not to quantify the concentration of buried thorium dioxide in the landfill.

PROCEDURE

A Scintrex GAD-6 four channel gamma ray spectrometer will be used to perform the survey. An instruction manual is provided with the equipment and should be read by the operator prior to performing the survey. The steps outlined below summarize the field procedure and highlight certain aspects of operating the equipment. They are not intended as a replacement for the instruction manual.

The instruction manual recommends that the instrument be "laboratory energy calibrated" on a weekly basis. This is particularly true if a quantitative survey is to be performed. The supplier of the equipment has indicated that the GAD-6 was shipped "laboratory calibrated" and recommends that only the daily "field energy calibration" be performed. If survey results show high variability, the operator should assume that the

東京の方面

instrument is out of calibration or that it has malfunctioned, and the supplier should be contacted for additional information.

The field energy calibration procedure is described on page 24 of the instruction manual (Appendix A). Before attempting the field calibration the operator should inspect the equipment to insure that all cables and batteries are properly installed and connected, and that the barium (Ba) stabilizer source is installed in the sensor. The Ba source is located in a well in the sensor end of the detector (the end that does not have the cable attachment). A screw head, located in the center of the sensor holds the Ba source in place. The operator must unthread the screw and make sure that the Ba source is present. The Ba source is required for proper operation of the equipment and must be installed during the field calibration procedure and during normal operation.

After field calibration is complete, data collection can begin. The outcome of a gamma ray survey can be affected by two major variables, the distance the detector is held above subsurface radioactive material and the count time. During data collection the detector will be held vertically with the sensor in contact with the ground. The northern disposal site is relatively flat, and complications due to variations in relief are not anticipated. The sensor will be held at arms length, i.e., about 2 feet above the ground surface. The count time will be fixed at 300 seconds (5 minutes). However, prior to actually collecting data in the disposal area, natural background radiation levels should be established. Background measurements will be taken in an area north and west of the northern disposal area, in several locations underlain by native materials. While establishing background levels, the instrument will be operated with the display switch set on automatic. At each background station, readings will be taken at count times of 100, 300 and 1,000 seconds, to evaluate the consistency of readings at different count times. During the background survey, readings for each channel (total count, K, U and Th) will be logged).

The survey across the northern disposal area will be performed with the instrument operating in the automatic mode and with the mode selection switch set to "differential non-stripped". Data collection will be performed along a grid system that

has been surveyed at the site. The survey lines are at right angles to one another and spaced 100 feet apart. Readings will be taken at 25 foot intervals along each line. After the count is completed at each station the data will be logged by the operator on a data form. During the survey, occasional repeat readings will be obtained at both the background stations, and at stations along the traverse lines to check for possible instrument drift with time.

WM-44I

Appendix I

Radon Gas Survey DuPont Newport Site Newport, Delaware

Woodward-Clyde Consultants

TABLE OF CONTENTS

																					Page Number
1.0	DATA OBJECTIVES	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•		1
2.0	SCOPE OF WORK	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	1
3.0	DISCUSSION OF RESULTS.	•	•	•	•		•	•	•	•	•	•	•	•	•	•.	•	•	•	•	2
4.0	CONCLUSIONS	•	•										•			•					3

Woodward-Clyde Consultants

I-3

LIST OF TABLES

	Table Number
RADON GAS SAMPLES DU PONT NEWPORT NORTH DISPOSAL SITE	1
LIST OF FIGURES	
	Figure Number
MAP OF NORTH DISPOSAL SITE SHOWING RADON GAS SAMPLE RESULTS - DU PONT NEWPORT	
LIST OF APPENDICES	
	Appendix
PROCEDURE FOR SAMPLE COLLECTION OF RADON GAS	I-1
DETERMINATION OF RA-226 IN WATER TELEDYNE ISOTOPES, INC	I-2
REPORT OF ANALYSIS	

1.0 DATA OBJECTIVES

A limited survey of radon-222 gas was conducted in June 1987 at the North Disposal site in conjunction with a larger-scale survey of volatile organic compounds in soil gas at the Site. The samples were collected in the area where waste containing thorium-232 was believed buried at a depth of 10 feet. (Subsequent information has shown that buried waste is located elsewhere than originally thought at the time radon sample locations were selected.)

Radon-222 is a daughter of radium-226 which, in turn, is a daughter in the uranium-238 decay series. The data from these analyses serve as an independent check on the occurrence of uranium-238 at the North Disposal site for comparison with the indirect ground-level measurements of gamma radiation from uranium-238 taken during the field radiometric survey with a portable gamma spectrometer at the North Disposal site.

2.0 SCOPE OF WORK

Background information from existing records at the Newport plant does not indicate the occurrence of uranium-238 in the landfill waste materials. Consequently, ten soil gas samples were obtained for analysis. The samples were obtained on July 8, 1987. The procedure for sample collection is presented in Appendix I-1. The samples collected are identified in Table 1, which also describes the field conditions at the time of sampling.

The samples were all shipped via overnight express to Teledyne Isotopes, Westwood, New Jersey, from the site, on the sampling date in accordance with procedures. However, the express courier delivered only 2 of the 10 samples (D6 and E6) on July 9. The remaining 8 cylinders were delivered to an incorrect address, and arrived at Teledyne's laboratory on July 10. The accuracy of analyses of these specimens are not considered to be adversely affected by the delay.

The procedure used by Teledyne for soil radon gas analysis is modified from their standard method of determining the concentration of radium-226 in water utilizing the emanation technique whereby radon-222 emanating from radium-226 in groundwater is allowed to reach equilibrium, and the radon gas drawn off for analysis. Inasmuch as the gas was drawn off in the field, the laboratory procedure was modified to begin with gas analysis as set forth in Appendix I-2.

3.0 DISCUSSION OF RESULTS

The results of laboratory analysis are depicted in Figure 1. The laboratory reports are provided as Appendix I-3. Interpretation of the distribution of radon data is usually difficult because of the effects of many factors including, but not limited to: weather-related effects during sampling; subsurface saturation, permeability and porosity variations; and heterogeneity of materials.

Because the data are derived from a disposal area, it is difficult to define the source of the radon except to say that it ultimately is a decay product of uranium-238. It is unlikely that the uranium is part of the buried waste; the buried wastes were known to contain only thorium 232. Rather, the source is thought to occur within organic rich layers (e.g., marsh deposits) which occur naturally in the upper few feet of soil and overburden at the Site. It is also possible that the minerals of the clay cap contain unusually high concentrations of naturally occurring uranium, though this seems unlikely. Data from the soil gas surveys suggest that radon gas appears to be accumulating beneath the clay cap.

The radon concentrations at depth are 2 to 3 orders of magnitude above EPA's average outdoor level of 0.2 picocuries per liter. These data, however, may not be truly representative given only one sampling event. Moreover, gamma radiation emanating from the site based on ground radiometric surveys on the average is consistent with background levels.

Variations of the level of radon concentrations (Figure 1) cannot be attributed solely to the effects of barometric pressure changes during sampling, temperature, or time elapsed between sampling and laboratory analysis. The recent rainfall history at the time of sampling together with lateral variations in subsurface hydrogeologic conditions may influence radon concentrations in such a way that they were not representative of overall site conditions at the time and depths of sampling.

The available data discussed above suggest that the cap is effective in limiting diffusion of radon gas from the organic rich sediments into the atmosphere at the site. Enhanced natural radioactivity by barriers that retard the diffusion of radon gas is a recognized phenomenon.

4.0 CONCLUSIONS

- 1. Radon concentrations at depths of 3.5 to 5.5 feet are elevated above EPA's average outdoor level. Detected surface radiation levels are at background levels.
- 2. The source of the uranium is uncertain, but is thought to occur within natural organic rich materials buried beneath the clay cap. It is believed to be unrelated to buried radioactive wastes, which are known to contain only thorium 232.
- 3. The clay cover appears to be effective in limiting diffusion of radon gas into the atmosphere at the site. The enhancement of natural radioactivity by barriers that retard the diffusion of radon gas is a recognized phenomenon.
- 4. Drilling or excavating within the North Disposal site may vent the radon gas and thus pose a potential health risk to field personnel.

¹⁾ National Council on Radiation Protection and Measurements, 1984. Exposures from the Uranium Series with Emphasis on Radon and Its Daughters, NCRP Report No. 77.

Tables

TABLE 1

RADON GAS SAMPLES

DU PONT NEWPORT NORTH DISPOSAL SITE

Teledyne Spl No.	WCC Probe Location	Probe <u>Depth (ft)</u>	Sample Time (P.M.)
5560	C c	4.5	
5569	C-6	4.5	3:4 5
4459	D-6	5	3:15
5 553	E-6	5	2:45
554 9	F-6	3.5	2:15
4455	G-6	4	2:00
5537	G-7	5	4:15
5512	D-7	5.5	1:00
5570	E-7	5.5	1:15
5554	F-7	5	1:30
5530	G-7	3	1:45

Sample Date: 8 3

8 July 1987

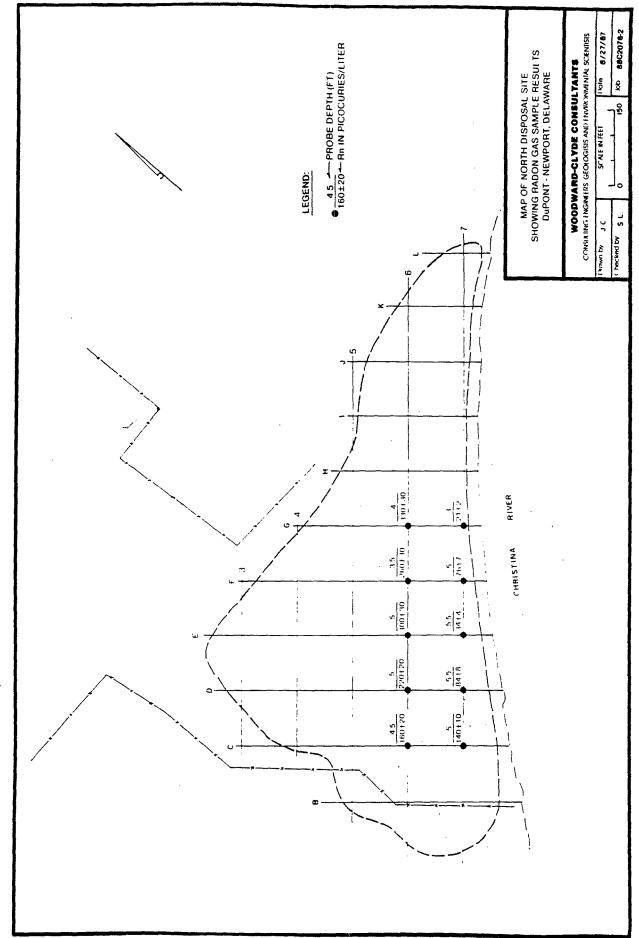
Temperature:

90° F at 1:00 pm; 83° F at 4:15 pm

Humidity:

42 percent

Barometer:


29.96 (falling)

Winds:

NW 8 mph

WM-44I

Figures

Appendix I-1

APPENDIX I-1

PROCEDURE FOR SAMPLE COLLECTION OF RADON GAS

The following procedure describes the method used for collection of radon gas samples for analysis by Teledyne Isotopes, Inc., of Westwood, New Jersey. The sampling equipment and its use is described in the RI/FS Work Plan and is not repeated here. The radon gas samples are collected in conjunction with soil gas sampling for analysis of volatile organic compounds. The sample containers are provided by Teledyne Isotopes.

Before a sample is taken, a vacuum pump is used to evacuate the soil gas probe for a period of five minutes at the rate of 1 liter per minute. The pump is then disconnected and the radon sampling cylinder attached to the probe head vacuum port. The sampling cylinder is attached to the vacuum port with duct tape because both ports are approximately the same size, and both consist of threaded pipe instead of graded gas outlet pipe. Therefore, duct tape provides a better seal than plastic tubing.

When in place against the vacuum port and sealed, the sample cylinder inlet is opened. The release of the vacuum in the sampling cylinder draws soil gas in through the probe. The vacuum release valve is slowly opened allowing approximately 4 to 8 liters per minute to be drawn into the container.

When the container is full, the valve is closed and the end resealed. Each cylinder is tagged showing the date of sampling, sampler, analysis requested (radon), sample identification, and the Woodward-Clyde contact and address.

All samples are shipped to Teledyne the day of sampling.

WM-441

Appendix I-2

50 VAN BUREN AVENUE

WESTWOOD, NEW JERSEY 07675

(201) 664-7070

TELEX 134474 TDYISOT WTWD

August 6, 1997

Mr. Scott Laird Woodward-Clyde Consultants Butler Pike Plymouth Meeting, PA 19462

Dear Mr. Laird:

The method of Rn-222 counting when the sample is a gas is a variation of the determination of Ra-226 in water procedure, a copy of which is attached. I have marked the differences. For Rn-222 in a gas sample, begin with 5.0 (a).

Sincerely,

J. David Martin, Ph.D. Vice President-Technical

JDM:cs

enc. -

DETERMINATION OF RA-226 IN WATER

1.0 INTRODUCTION

The procedure describes the method of determining Ra-226 in water samples by the emanation technique. Radon-222 is equilibrated with the parent radionuclide, Ra-226, and then transferred through a closed system to an evacuated one-liter alpha chamber. The Rn-222 and daughters activities are measured in successive counting periods for an eighteen hour period.

2.0 DETECTION CAPABILITY

The minimum detectable level (MDL) for water samples is nominally 0.1 pCi/L for Ra-226 at the 4.66 sigma confidence level. This figure is based upon a sample volume of 0.5L, a counting time of 1000 minutes, and upon representative values of counting efficiency (for Rn-222 and two alpha emitting daughters) and background of 2.45 and 2.3 cpm, respectively.

3.0 SAMPLE SELECTION PROCEDURE

- (a) Using the Sample Receipt Form with the Teledyne Isotopes sample number, locate the sample (or sample group) in the Sample Receiving and Storage Room. Transport the sample(s) to the Gas Analysis Laboratory.
- (b) Begin filling out the Calculation Sheet -- Ra-226 Gas Counting form, entering the customer name, the sample number, sample collection date, the sample preparation date and the initials of the analyst.

4.0 SAMPLE PREPARATION PROCEDURES

(a) Transfer 0.5\(\ell\) of water to a labeled emanation flask and close the flask from the atmosphere through the tapered, ground seal. Different volumes of sample may be used in order to

11/05

11/05

					Approved By
Issue or			Effective	Technical	Manager
Revision	Pages	Prepared By	Date	Approval	Quality Assurance
7	10		1.000		

Issue (See original for 1976-1983 signatures)

Rev. 3

11/05/86

1. D. Martin AR301632 H Jeles-

H. G. King

obtain different minimum detection levels and depending on 11/05, the availability of sample volume.

- (b) Connect flask to helium supply and pass helium for ten minutes through the frited disk. The bubbling from the frit purges radon from the sample.
- (c) Close the two stopcocks on the emanation flask.
- (d) Set flask aside for two weeks to permit the Rn-222 activity to equilibrate with the Ra-226, if any, in the water.

5.0 DETECTOR LOADING

After two weeks, proceed with following steps.

- (a) Attach the flask to an evacuated 12 volume alpha counting chamber through the gas handling system. and other go
- (b) Open the stopcock on the flask which will permit Rn-222 tand--any residual He) to pass into the 12 counting chamber.
- (c) After ten minutes attach the He supply to the other stopeock two and open stopcock and flow He through the frit, water sample and into the 12 counting chamber until a pressure of one atmosphere is reached on the vacuum gauge. This step and step (b) transfers Rn-222 from the water sample to the counting -chamber.
- (d) Close the vacuum valve attached to the 12 counting chamber. (e) Record the pressure;

6.0 SAMPLE COUNTING

- (a) Turn on high voltage power supply and adjust voltage to predetermined counting voltage.
- (b) After two minutes, erase any counts on the scaler and push the $\frac{11}{05/8}$ start accumulation button. Record the start time.

Record Count at 60 minute intervals until ingrowth of Rn-222 daughters is complete as indicated by a maximum count. activity is indicated by the count, recount the following day for 60 minutes to verify the presence of Rn-222 by the decay.

7.0 STANDARDS AND CONTROL OF COUNTERS

(a) A Ra-226 standard which is NBS traceable, is counted in the same manner as described above once per month. The efficiency of the combined radon extraction from the sample and the nuclear counting is determined with the standard. Record the results on a chart.

TELEDYNE ISOTOPES

8.0 CALCULATION OF Ra-226 ACTIVITY

The Ra-226 activity is determined from the Rn-222 activity as follows:

$$\frac{\text{Net pCi}}{\text{unit volume}} = \frac{\left(\frac{N}{\Delta t} - \beta\right) e^{\lambda t}_{2}}{2.22(v) (\varepsilon) \frac{(1-e^{-\lambda t}_{1})}{(1-e^{-\lambda t}_{1})}} \pm \frac{2\left(\sqrt{\frac{N+\beta}{\Delta t}}\right) e^{\lambda t}_{2}}{2.22(v) (\varepsilon) \frac{(1-e^{-\lambda t}_{1})}{(1-e^{-\lambda t}_{1})}}$$

net activity

counting error

where: N = total counts from sample (counts)

 $\Delta t = counting time for sample (min)$

 β = background rate of counter (cpm)

 $2.22 = \frac{dpm}{pCi}$

v = volume of sample analyzed

 ϵ = efficiency of the counter

- determines the "ingrowth" of Rn 222 from Ra 226 during the time lapse of t1

tr = the time lapse of the first helium purge to the second heliumpurge

 λ = the decay constant for Rn-222

 $e^{\lambda t}_2$ = the correction for Rn-222 decay from the mid count time to the time it was transferred to the counting chamber

 t_2 = the time lapse from transfer to chamber to mid count time

10/0

Establishing and reporting activities that are equal to or less than the detection limit:

If the net activity is equal to or is less than a specified multiple of the background counting error, the activity is below the limits of detection and is called "less than" (L.T.) or "minimum detectable level" (MDL).

The L.T. value can be specified by stating only the counting error at a predetermined multiple (σm) of the one sigma statistics. A sigma multiple (σm) of 4.66 is used for calculation of the L.T. values unless the customer requests another value such as 2.83.

thus L.T. =
$$\frac{\sqrt{\frac{\beta}{\Delta t}} \left(e^{\lambda t}_{2}\right)}{2.22(v)(\epsilon)\frac{(1-e^{-\lambda t}_{1})}{2}}$$

10/

Appendix I-3

REPORT OF ANALYSIS

JULY 29, 1987

RUN DATE 07/28/87

PAGE

DELIVERY DATE 08/19/87 DATE RECEIVED 07/11//87 CUSTONER P.O. NUMBER MORK DRDER NUMBER 3-1137 19462 MR SCOTT LAIRD WOODWARD-CLYDE CONSULTANTS BUTLER PIKE PLYMOUTH MEFTING PA 19

	TELEDYNE	fi			COLLECTION-DATE	TE			TNUC 3-01 M		
	SAMPLE	,,,	CUSTOMER*S Identification	NUM	START ST DATE TIME DATE	STOP DATE TIME NUCLIDE	ACTIVITY	NUCL-UNIT-X U/M +	TIME Date time	VOLUME - UNITS ASH-WGHT-Z +	LAB.
	06745	GAS	GAS CYLINDER-5569 C-6		07/15	RN-222	1.6 +-0.2 E 0	1.6 +-0.2 E 02 PCI/LITER +	07/21		~
	06746	GAS	GAS CYLINDER-5532 C-7		01/15 0415	9N-222	1.4 +-0.1 E 02	PCI/LITER +	07/21		~
	14190	SAS	GAS CYLINDER-5512 D-7		07/15	RN-222	8.4 +-0.8 E 01	PCI/LITER +	07/21		~
	06748	GAS	GAS CYLINDER-5570 E-7		07/15	4 N-222	3.5 +-0.4 E 01	PCI/LITER .	07/22		~
	06749	CAS	GAS CYLINDER-5549 F-6		01/15 0200	9 N-222	2.6 +-0.3 E 0	2.6 +-0.3 E 02 PCI/LITER .	22/10		~
A -	06750		GAS CYLINDER-5554 F-7		07/15 0122	RN-222	7.6 +-0.7 E 01	PCIZLITER *	01/20		~
	06751	GAS	GAS CYLINDER-4455 G-6		07/15	RN-222	3.3 +-0.3 E 02	2 PCI/LITER +	07/22		~
	06752	GAS	GAS CYL INDER-5530 G-7		07/15 0137	RN-222	2.1 +-0.2 E 01	PCIZLITER .	07/20		~
					د :	LAST PAGE OF GEPORT		APPROVED	APPROVED BY H. KING	07/28/87	

5 - TRITIUM GAS/L.S. LAB.

4 - GF(LI) GAMMA SPEC LAB.

3 - RADIO CHEMISTRY LAB.

2 - GAS LAB.

SEND 1 COPIES TO WOSSOS MR SCOTT LAIRD

AR301638

REPORT OF ANALYSIS

PEPORT OF ANALYSIS

DELIVERY DATE DATE RECEIVED CUSTOMER P.O. NUMBER

MORK DROER NUMBER

3-1132

07/16/87

LAB.

PAGE

08/18/87

RUN DATE 07/28/87

;		
•		

MID-COUNT TIME VOLUME - UNITS DATE TIME ASH-WGHT-X **

ACTIVITY

G A S

19462

PLYMOUTH MEETING PA

MR SCOTT LAIRO WOODWARD-CLYDE CONSULTANTS BUTLFR PIKF

DATE TIME DATE TIME NUCLIDE

ST JP

COLLECTION-DATE START

STA

CUSTOMER+S
IDENTIFICATION

TELFDYNE Sample Number

NUCL-UNIT-E

• 07/20 PC1/LITER

2.2 +-0.2 E 92

07/20

APPRINED BY H. KING (07/28/87

5 - TRITIUM GAS/L.S. LAB.

3.0 +-0.3 E 02 PCI/LITER +

RN-222

LAST PAGE OF REPORT

RN-222

21/10

07/15

06621 CYL NO 4459 D6 06622 CYL NO 5553 E6

SEND 1 COPIES TO WOSSOS MR SCRTT LAIRD

3 - RADIO CHEMISTRY LAB.

2 - GAS LAB.

4 - GETLII GAMMA SPEC LAB.

AR301640

,**1** :

Chemistry Report Du Pont Newport Site Newport, Delaware

Woodward-Clyde Consultants

TABLE OF CONTENTS

			Page Number
1.0	INTE	RODUCTION	. 1
	1.1	SITE LOCATION	. 1
	1.2	HISTORICAL SITE CHEMISTRY	. 1
	1.3	ENVIRONMENTAL SETTING	. 2
	1.4	SITE GEOLOGY AND HYDROLOGY	. 3
	1.5	PREVIOUS INVESTIGATIONS	. 4
	1.6	PURPOSE AND SCOPE	. 5
2.0	GRO	UNDWATER CHEMISTRY	. 6
	2.1	PARAMETER DISTRIBUTION	. 8
	2.2	RELATIONSHIP OF GROUNDWATER CHEMISTRY TO HYDROGEOLOGY	. 12
3.0	TEST	BORING SOILS CHEMISTRY	. 15
	3.1	PARAMETER DISTRIBUTION	. 15
	3.2	RELATIONSHIP OF SOILS CHEMISTRY TO GROUNDWATER CHEMISTRY	. 19
4.0	CHR	ISTINA RIVER WATER CHEMISTRY	. 20
	4.1	PARAMETER DISTRIBUTION	. 20
	4.2	EVALUATION	. 21
5.0	CHR	SISTINA RIVER SEDIMENT CHEMISTRY	. 22
6.0	SOU	TH DISPOSAL SITE FILL CHEMISTRY	. 23

Woodward-Clyde Consultants

LIST OF TABLES

	Table Number
HYDROSTRATIGRAPHIC UNITS	1
GROUNDWATER SAMPLING SUMMARY	2
WELLS WHOSE PARAMETERS EXCEED USEPA DRINKING WATER MAXIMUM CONCENTRATION LEVELS (MCL)	3
ORGANIC COMPOUNDS DETECTED IN TEST BORINGS	4
METALS DETECTED IN TEST BORINGS ABOVE BACKGROUND LEVELS	5
SUMMARY OF HEAVY METALS IN CHRISTINA RIVER WATER (August 13, 1987)	6
SUMMARY OF EP TOXICITY METALS AND REACTIVE SULFIDE DETECTED IN TEST PIT SAMPLES	7
SUMMARY OF HAZARDOUS SUBSTANCE LIST COMPOUNDS AND METALS DETECTED IN TEST PIT SAMPLES	8

LIST OF FIGURES

	Figure Number
SITE LOCATION	1
CROSS-SECTION LOCATION PLAN	2
GROUNDWATER, A-A' - BARIUM, ZINC, AND CADMIUM CONCENTRATIONS	3
GROUNDWATER, B-B' - BARIUM, ZINC, AND CADMIUM CONCENTRATIONS	4

LIST OF FIGURES (continued)

	Figure Number
GROUNDWATER, SHALLOW ZONE - BARIUM, ZINC, AND CADMIUM CONCENTRATIONS	5
GROUNDWATER, INTERMEDIATE ZONE - BARIUM, ZINC, AND CADMIUM CONCENTRATIONS	6
GROUNDWATER, DEEP ZONE - BARIUM, ZINC, AND CADMIUM CONCENTRATIONS	7
GROUNDWATER, A-A' - TCE AND PCE CONCENTRATIONS	8
GROUNDWATER, B-B' - TCE AND PCE CONCENTRATIONS	9
GROUNDWATER, SHALLOW ZONE - TCE AND PCE CONCENTRATIONS	10
GROUNDWATER, INTERMEDIATE ZONE - TCE AND PCE CONCENTRATIONS	11
GROUNDWATER, DEEP WELLS - TCE AND PCE CONCENTRATIONS	12
GROUNDWATER, SHALLOW ZONE - BARIUM CONTOURS	13
GROUNDWATER, INTERMEDIATE ZONE - BARIUM CONTOURS	14
GROUNDWATER, SHALLOW ZONE - ZINC CONTOURS	15
GROUNDWATER, INTERMEDIATE ZONE - ZINC CONTOURS	16
GROUNDWATER, SHALLOW ZONE - CADMIUM CONTOURS	17
GROUNDWATER, INTERMEDIATE ZONE -	

Woodward-Clyde Consultants

LIST OF FIGURES (continued)

	Figure Number
GROUNDWATER, SHALLOW ZONE - TCE CONTOURS	19
GROUNDWATER, INTERMEDIATE ZONE - TCE CONTOURS	20
GROUNDWATER, SHALLOW ZONE - PCE CONTOURS	21
GROUNDWATER, INTERMEDIATE ZONE - PCE CONTOURS	22
TEST BORINGS - SOILS, A-A' - BARIUM, ZINC, AND CADMIUM CONCENTRATIONS	23
TEST BORINGS - SOILS, B-B' - BARIUM, ZINC AND CADMIUM CONCENTRATIONS	24
TIDAL STAGE VERSUS SODIUM AND LEAD CONCENTRATIONS, CHRISTINA RIVER WATER	25
LOCATION OF CHRISTINA RIVER SEDIMENTS	26
CHRISTINA RIVER SEDIMENTS - OIL AND GREASE	27
CHRISTINA RIVER SEDIMENTS - BARIUM CONCENTRATIONS	28
CHRISTINA RIVER SEDIMENTS - CADMIUM CONCENTRATIONS	29
CHRISTINA RIVER SEDIMENTS - ZINC CONCENTRATIONS	30
SOUTH DISPOSAL SITE FILL - BARIUM AND CADMIUM CONCENTRATIONS	31
SOUTH DISPOSAL SITE FILL - ZINC AND LEAD CONCENTRATIONS	32
SOUTH DISPOSAL SITE FILL - EP TOX METALS AND REACTIVE SHIFTDE	33

Woodward-Clyde Consultants

LIST OF APPENDICES

	<u>Appendi</u>
GROUNDWATER - CONCENTRATIONS OF DETECTED PARAMETERS	J-1
SOILS - CONCENTRATIONS OF DETECTED PARAMETERS	J-2
CHRISTINA RIVER WATER - CONCENTRATIONS OF DETECTED PARAMETERS	J-3
CHRISTINA RIVER SEDIMENT - CONCENTRATIONS OF DETECTED PARAMETERS	J-4
SOUTH DISPOSAL SITE FILL - ANALYTICAL RESULTS	J-5

1.0 INTRODUCTION

1.1 SITE LOCATION

The Du Pont Newport Site is located within the property boundaries of the Holly Run Plant (formerly, Newport Plant) of E.I. du Pont de Nemours and Company (Du Pont) in Newport, Delaware (Figure 1). The Site consists of two distinct areas separated by the Christina River, which flows through New Castle County, Delaware, to the Delaware River. The northern portion of the Site, which is located north of the Christina River, is a seven acre parcel bounded on the north by the Du Pont and Ciba-Geigy plants and on its south side by the Christina River. The southern portion of the Site constitutes 15 acres of a 45-acre parcel of land owned by Du Pont on the south side of the Christina River. The former is referred to herein as the "North Disposal site," and the latter is referred as the "South Disposal site" (Figure 2).

The land to the north of the Site is primarily residential. The majority of the remaining adjacent property is low-lying land associated with the Christina River marshes. To the southwest is a sizeable expanse of marshland covered by auto junkyards and rimmed by a residential/commercial strip along Old Airport Road.

1.2 HISTORICAL SITE CHEMISTRY

The Newport Plant is a pigment manufacturing plant now owned by Ciba-Geigy located at James and Water Street in Newport, Delaware. The plant was originally owned and operated (from 1902 to 1929) by Henrik J. Krebs for the manufacture of Lithopone, a white inorganic pigment. In 1929, Du Pont purchased the plant and continued to manufacture Lithopone along with other materials, including organic and inorganic pigments. The pigment manufacturing operations were purchased by Ciba-Geigy in 1984, while chromium dioxide magnetic recording tape operations have been retained by Du Pont at their Holly Run Plant.

During plant operations, areas of the Site bordering the Christina River were landfilled as a means of waste disposal. Landfilling occurred in both the North Disposal site and the South Disposal site. The North Disposal site was used for disposal of general refuse and process wastes from the early 1902 until 1974. The North Disposal site received a variety

-2-

of material, including plant debris such as off-spec product Corian (imitation marble) counters, empty steel drums, metal alloys, liquid wastes, and pigment muds. After disposal ceased in 1974, the North site was capped with approximately two feet of clay, and monitoring wells were installed for detection of contaminants.

The South Disposal site was operated from approximately 1902 to 1953. Materials deposited in this landfill consisted of primarily insoluble residues of zinc and barites ores, which were pumped as a slurry through a pipeline under the Christina River. Some dikes and berms were constructed to contain the material. In 1973, the State of Delaware, Department of Highways, deposited approximately 130,000 cubic yards of additional soil from highway construction at this location, covering the South Disposal site with an average three feet of variable soil.

1.3 ENVIRONMENTAL SETTING

The Newport Site is located adjacent to the north and south banks of the Christina River. Except in the landfilled disposal areas, the land adjacent to the river bank is mostly comprised of wetlands. The Christina River at this location demonstrated a tidal range of about 5 feet during a month of continuous tidal stage monitoring in June - July, 1987.

The North Disposal site is primarily covered with maintained grass and rimmed with pine trees and other vegetation. A drainage ditch surrounds the landfill, emptying into the Christina River west of the landfill. Except in areas sloping toward the drainage ditch, the surface elevation for most of the North Disposal site is at an elevation of 20 to 25 feet and at least 10 feet above the shallow water table.

The South Disposal site is currently moderately to heavily vegetated. The previous landfilling operations resulted in grade elevations ranging from a high of about elevation 30 at the extreme northern corner to about elevation 2 at the southern end of the landfilled area. There is a gentle gradient, north to south, but with a steepening slope near the southern edge of the filled area.

A dike traverses the center of the 45-acre southern tract in an east-west direction, curving in a northerly direction at the eastern and western boundaries of the Site. This dike has steep side slopes and an approximately 25-foot wide crest with a typical elevation of about 12 to 13 feet above mean sea level. A breach exists in the dike near its southwestern corner. There is a triangular wedge of lowlands (wetlands) and a small surface water pond that exists between the dike and the South Disposal site. The water in the ponded area is reportedly tidal in response to the adjacent Christina River.

The remaining southern portion of the 45-acre tract is relatively unaltered lowlands which have been designated by the U.S. Fish and Wildlife Service as "wetlands". A series of ditches have been cut throughout this wetlands area. The water from the ditch system flows to the Christina River via a tide gate located at the west end of the northern property boundary with the Christina River. This tide gate is designed to allow surface water to flow from these wetlands at low tide, but to prevent inflow of river water when the tide level rises by sealing a flap valve on the outflow side of the tide gate pipe.

1.4 SITE GEOLOGY AND HYDROLOGY

The Du Pont Newport Site is located within the Atlantic Coastal Plan, an area underlain in northern Delaware by unconsolidated sands and silty clays of the Columbia and Potomac Formations reaching a total thickness of 110 to 140 feet in the Newport area. Based on lithologic analysis and geophysical logging of seven test boreholes, the strata at the Site are subdivided into five hydrostratigraphic units (Table 1). The water-bearing units include the Columbia Formation (Unit I) and sand members of the lower Potomac Formation (Units III_A and IV). Aquitards include the middle silty clay member of the Potomac Formation (Unit II) and clayey silt beds within the lower Potomac Formation (Unit III_B). More details are provided in the previously submitted Hydrogeology Report, Du Pont Newport Site, Volume No. 1 (WCC, September, 1987).

Groundwater levels in monitoring wells on-site indicate that the shallow water-bearing sands (Unit I) are under unconfined (water table) conditions and the deeper water-bearing sands (Units IIIA and IV) are under semi-confined or confined (artesian)

conditions. Contours of the potentiometric head for each of the water-bearing zones at both low and high river stage suggest that the Christina River is a hydrologic boundary at the Site. Contours of the potentiometric head (low and high river stage) in profile show an upward groundwater gradient from the lower member of the Potomac Formation, to the Columbia Formation, and to the Christina River. Furthermore, much of the area of the Newport Site, including all of the North Disposal site is a groundwater discharge area.

1.5 PREVIOUS INVESTIGATIONS

Initial hydrogeologic and groundwater quality investigations (1975 to 1986) were conducted by Du Pont at the site under the approval of the State of Delaware Division of Natural Resources and Environmental Control (DNREC). On the basis of monitoring well and boring descriptions, as well as the groundwater level monitoring program conducted by Du Pont, an initial conceptual model of groundwater flow was made. These hydrogeologic deductions provided the basis for inferring the fate of contaminants introduced into the groundwater system and developing the plans for later hydrogeologic investigations.

In addition to using the previously existing supply wells WW-11 and WW-13, 16 test borings and 13 monitoring wells were installed by Du Pont from 1975 to 1981 to evaluate the hydrogeologic and groundwater quality conditions in the vicinity of the Newport Site. Together with WW-11 and WW-13, ten of the original 13 monitoring wells were used thru 1986 to monitor groundwater quality and water levels. Quarterly reports were submitted to the Delaware Department of Natural Resources and Environmental Control (DNREC). These groundwater quality data indicated that the following parameters of concern were present in certain monitoring wells both north and south of the Christina River:

Barium;
Cadmium;
Zinc;
Tetrachloroethylene; and
Trichloroethylene.

The distribution and concentrations of these parameters generally related to the pigment manufacturing operations at the Site and historical pumpage from supply wells WW-11 and WW-13. The observation was made that pumpage from these supply wells up until 1980 created cones of depression which apparently reversed the normal hydraulic gradient and possibly induced movements of contaminants northward from the North Disposal site. Following 1980, concentrations typically declined in the northernmost wells as a normal southerly hydraulic gradient returned in the hydrogeologic system.

Observations were also made that beyond the perimeter of the North Disposal site, much of the Site area north of the river apparently has a natural vertical upward hydraulic gradient from the Potomac Formation to the Columbia Formation. In addition, the Christina River probably acts as a discharge boundary for the Columbia Formation. Consequently, the limited data that indicated the presence of some groundwater contaminants south of the river suggested that a source (or sources) of these metals and organics might exist on the south side of the river.

In order to expand the database for the North and South Disposal sites, Du Pont directed Woodward-Clyde Consultants (WCC) to conduct a series of field tasks during 1987 to acquire information as addressed in the Proposed RI/FS Work Plan (WCC, July 20, 1987) submitted by Du Pont to the EPA in July 1987. These 1987 field tasks comprised Phase I of the Remedial Investigation (RI).

1.6 PURPOSE AND SCOPE

This Chemistry Report has been prepared to present and evaluate the analytical data collected during the RI (Phase I) field tasks described above. The matrices sampled for analysis included groundwater, soils, river sediments, river water, and fill. The samples were shipped to ETC Corporation, where most of the samples were analyzed for the Hazardous Substance List (HSL) parameters. The analytical results prepared by ETC Corporation for each matrix are addressed individually in Sections 2.0 through 6.0. Analytical data validation will be performed during Phase II of the RI.

-6-

The following samples were collected during the RI (Phase I) field tasks:

- o Two rounds of groundwater samples were collected at the Site from 11 previously existing and 27 newly constructed monitoring wells (see Figure 2);
- o Soil samples were collected from about 14 separate depths in test borings drilled to depths reaching up to 162 feet at seven locations spanning the Du Pont property north and south of the Christina River;
- o Twelve water samples were collected over one tidal cycle in the Christina River;
- o Sixteen sediment samples were collected from the Christina River proximal to the Site; and
- o Eight samples of fill material were collected from the South Disposal site.

2.0 GROUNDWATER CHEMISTRY

Groundwater sampling was conducted by WCC in August 1987 on 37 Du Pont monitoring wells and by Aqua Services, Inc. in December, 1987 on 36 Du Pont monitoring well and two residential wells proximal to the Site on Old Airport Road (Table 2). The August 1987 groundwater samples were analyzed for the complete HSL. The December 1987 groundwater samples were analyzed for HSL volatile organics, HSL Base/Neutral semi-volatile organics, plus barium, cadmium, chromium, copper, lead, nickel,zinc, arsenic, sodium, berillium, silver, and sulfate. A summary of the ETC Corporation analytical data showing all detected parameters is presented in Appendix A. Pages A-1 through A-41 of Appendix A display wells where individual parameters were detected; whereas pages A-41 through A-80 shows analytical data tabulated by well number.

The 13 parameters listed below were detected in unfiltered samples above drinking water standards, or USEPA Maximum Concentration Levels (MCL), on one or both sampling rounds as shown on Table 3:

Barium;

Cadmium;

Chromium;

4.4'-DDD;

4,4'-DDT;

1,2-trans-Dichloroethylene;

Iron:

Lead:

Manganese;

Sodium;

Tetrachloroethylene (PCE);

Trichloroethylene (TCE); and

Zinc.

The analytical results on the tables and figures in this report are based on unfiltered samples. Thus, the metal parameter data represent "total" concentrations, not "dissolved" concentrations. Using unfiltered sample data typically provides a conservative basis for Chemistry interpretation. Likewise, the highest parameter value of the two episodes of groundwater sampling was used in preparing both the graphics which do not show both sampling episodes, and in making interpretations for the Site.

Some additional discussion is warranted regarding the significance of the total versus dissolved concentrations for metals at the Site, as well as the comparison of August 1987 versus December 1987 analytical results. Because cadmium was detected above the MCL in more wells than the other parameters of concern, the cadmium data is addressed here in detail. Review of the total and dissolved cadmium concentrations for the two sampling rounds suggests that:

- nearly all of the dissolved (filtered) concentrations are less than or comparable to the total concentrations;
- o about one-third of the total concentrations was detected slightly above detection levels, but were not detected in dissolved concentrations; and
- o there were no significant inconsistencies or patterns between the August and December results.

Woodward-Clyde Consultants

Thus, the concept of using the total concentrations and the greater value of the two sampling rounds to afford conservative interpretations is substantiated. However, such review also reveals that the seemingly frequent occurrence of cadmium levels at the Site is misleading because many of the samples have concentrations close to the detection limit, and fall below the limit in the filtered samples. It is important to recognize that the suspended sediments in the unfiltered sample that are contributing to the total cadmium concentration typically do not migrate with the groundwater through the hydrogeologic system. Consequently, modeling of any plume migration for remediation purposes should be based on the lower, dissolved metal concentrations. In addition, the typical comparableness and lack of any pattern in the minor differences between the August and December sampling rounds suggest that additional groundwater sampling prior to development of remediation alternatives is not warranted.

2.1 PARAMETER DISTRIBUTION

In order to evaluate the distribution of the observed parameters that exceeded the drinking water MCL (Table 3), a series of plan view maps and cross-sections were prepar (Figures 3 through 12). The five parameters selected for presentation on the groundwater figures were:

Barium;

Zinc;

Cadmium;

TCE: and

PCE.

The remaining eight parameters for which concentrations were detected above the drinking water MCL were not considered parameters of concern at this time due to low concentrations, limited distribution, or likelihood of being indigenous to the local, naturally occurring rock forming minerals. Although not displayed in the graphics, the distribution of these eight parameters is discussed in the text.

AR301655

The locations of cross-sections A-A' and B-B' are shown in Figure 2. For comparison, all Site monitoring wells were projected onto one of these cross-sections and screened intervals are shown relative to each of the five hydrostratigraphic units. The topography shown on the sections follows the straight line path along the cross-section lines. Consequently, the elevation of the well tops frequently deviates from ground surface along the cross-section line.

The plan view maps presented in sets of three correspond to the three waterbearing zones out of the five hydrostratigraphic units identified at the Site:

Shallow Zone - Unit I;

Intermediate Zone - Unit IIIA; and

Deep Zone - Unit IV

Addressing the metals on Table 3 first, Figures 3 and 4 show the total concentrations (unfiltered samples) of barium, zinc, and cadmium along cross-sections A-A' and B-B' for both the August and December 1987 sampling rounds. Figures 5, 6, and 7 display the total concentrations of these three metals in the shallow, intermediate and deep zones, respectively, for the two sampling rounds.

Barium: The drinking water standard of 1 ppm for barium was exceeded in two wells north of the Christina River and seven wells south of the Christina River. Eight of these nine wells were shallow. The wells with the highest concentrations of barium were located adjacent to the North and South Disposal sites. The largest quantity detected was 177,000 ppb in monitoring well MW-15.

Zinc: With the exception of wells MW-2B and MW-2C, the highest concentrations of zinc detected in the groundwater were in the westernmost areas sampled north and south of the river. The highest concentration detected was 167 ppm at shallow well SM-4. Zinc levels above the MCL (5000 ppb) were found mostly in shallow wells, except for one intermediate monitoring well. No zinc concentrations above the MCL were detected south of the South Disposal site.

Cadmium: Cadmium levels ranged from 4.4 to 640 ppb, with 25 wells having total cadmium concentrations above the drinking water MCL of 10 ppb. Wells with elevated cadmium concentrations were shallow, intermediate, and deep. There appeared to be four localized areas of slightly higher concentrations: one deep just north of the North Disposal site (MW-2C); one shallow at the southwesternmost part of the North Disposal site (SM-4); and two at intermediate depths north of the North Disposal site (DM-8) and at the western edge of the South Disposal site (DM-4). Laboratory verification has been requested for the dissolved cadmium concentration for the DML-7 August sample.

Chromium: Three shallow wells and one intermediate well south of the river had chromium detected above its drinking water standard (50 ppb). Four locations were detected north of the river. All four were shallow wells located on the property of the Ciba-Geigy - Newport and Du Pont - Holly Run Plants and south of the North Disposal site. Concentrations of chromium ranged from 3 to 120 ppb, as shown in Appendix A. Laboratory verification has been requested for the total cadmium concentration for the MW-3B August sample.

Iron and Manganese: These two metals were present in most wells above their drinking water MCLs of 300 ppb and 50 ppb, respectively. Iron was detected in 14 sampling locations north of the river and 20 locations south of the river, and ranged from 23 ppb to 178,000 ppb. The highest concentration was found at monitoring well MW-11. Manganese levels above the MCL were detected in 30 monitoring wells equally distributed north and south of the river. Most wells were shallow, although five were deep wells and seven were intermediate wells. The highest concentration of manganese detected was 27,700 ppb at SM-4, the southernmost monitoring well north of the river. Both the iron and manganese concentrations are considered naturally occurring in the Columbia and Potomac Formations.

Lead: Four shallow monitoring wells encircling the North Disposal site contained elevated levels of lead. Lead was also detected above drinking levels in shallow well samples south of the South Disposal site and in one area (south of the river near the property boundary) in an intermediate and deep well.

Sodium: Sodium was detected three times exceeding the drinking water standard of 50,000 ppb. One sample was from a deep monitoring well (MW-6C) along the Old Airport Road and two samples were from shallow wells at the southernmost locations north and south of the river. The reason for the observed sodium concentrations is unclear, but is probably unrelated to Site activities.

Of the five organic parameters shown on Table 3 which exceed the drinking water MCLs, only the TCE and PCE occurred in concentrations of concern and/or with distribution patterns of concern. Figures 8 and 9 show the concentrations of TCE and PCE along cross-sections A-A' and B-B'. Figures 10, 11, and 12 display results from both sampling rounds for TCE and PCE.

TCE: TCE was detected at 5 to 570 ppb. Nine sampling locations exceeded the drinking water standard (of 5 ppb), most of which were north of the river in shallow wells. Wells containing TCE on the south site were adjacent to the river.

PCE: The USEPA Recommended Maximum Concentration Level (RMCL) in drinking water for PCE is 0 ppb. PCE was detected in eleven wells north of the river and in four wells south of it. These four southern well locations are in close proximity to the river and tended to be of intermediate depth. Wells north of the river containing PCE were shallow or intermediate, except for one deep well at MW-2C. This was the same location having the highest concentration of PCE at the shallow depth (5.6 ppm at MW-2A).

4,4'-DDD and 4,4'-DDT: These two organics were detected a total of three times at locations along the perimeter of the two disposal sites. Wells DM-6 and MW-2A had concentrations of 4,4'-DDD at 4.4 and 5.6 ppb, respectively. MW-2A had 0.54 ppb of 4,4'-DDT.

1,2-trans-dichloroethylene: Sample concentrations of 1,2-trans-dichloroethylene ranged from below detection limits to 140.0 ppb. Levels were elevated in one shallow well (SM-5) located on the Ciba-Giegy Newport Plant and in another shallow well south of the river (MW-9).

In summary, shallow monitoring well SM-4 contained five of the thirteen parameters detected at their highest concentrations. Well MW-2A contained the largest concentrations of three other parameters and well SM-5 had the largest concentrations of two other parameters. The highest concentrations of the remaining four parameters were observed in wells MW-11, MW-14, and MW-15. The two residential wells (Necastro A and B) on Old Airport Road adjacent to the southwest corner of the Du Pont property showed no parameters above the MCL.

2.2 RELATIONSHIP OF GROUNDWATER CHEMISTRY TO HYDROGEOLOGY

To facilitate the interpretation of the relationship between the observed groundwater chemistry and the Site's hydrogeology, an additional series of contour maps were prepared (Figures 13 through 22). These ten figures display isoconcentration contours for barium, zinc, cadmium, TCE, and PCE in the shallow and intermediate depth water-bearing units. Combined with the other analytical results, these contour maps suggest that the groundwater chemistry data available to date is adequate to define the horizontal and vertical extent of groundwater contamination for the majority of the Site. In addition, the analytic data supports the previously developed hydrogeologic characterization of former and present day groundwater movement at the Site.

Based on Figures 13 through 18, the relationship of the heavy metal parameter concentrations in the shallow versus the intermediate zone is complex, but certain trends can be identified. The shallow zone contains the most wells with elevated barium, zinc, and cadmium concentrations. Figures 13, 15, and 17 show that barium and zinc are most concentrated in the proximity of the two disposal sites; whereas, cadmium concentrations remain within a relatively narrow range of values and become greatly elevated only at well SM-4. Although these three metals do not show identical vertical trends at all well locations, the metal concentrations typically decrease from the shallow zone to the intermediate zone.

Vertical upward gradients over much of the Site and discharge of groundwater from the Columbia Formation (shallow zone) into the Christina River could account for part of this observation. Contaminants that have entered the shallow zone typically have not

migrated downward into the intermediate zone over most of the Site. In addition, where a vertical downward path does exist, or has existed, due to natural or induced gradients, attenuation has apparently occurred in response to redox changes, adsorption, absorption, fixation, precipitation, etc. Vertical downward gradients were created by cones of depression associated with the former pumpage of water supply wells WW-11 and WW-13. This would have induced downward, westward, and northward movements of contaminants from the North Disposal site and plant operation areas into the intermediate zone.

The heavy metals data also indicate that the deep water-bearing zone at the Site typically does not contain barium and zinc in concentrations exceeding drinking water standards. In both sampling rounds, however, well MW-2C had elevated cadmium and zinc concentrations. This is probably an artifact of the former pumpage from WW-11 and WW-13. Otherwise, the natural vertical upward gradient in the Potomac Formation over most of the Site has apparently prevented or minimized the introduction of contaminants into the deep zone.

Another indication of the extent to which the Columbia Formation and the Potomac Formation act as separate hydrologic systems is shown by comparison of the lateral concentration changes within each zone. The shallow zone parameter concentrations appear to reflect the impact of various plant operations that occurred at ground surface over time, along with surface water and shallow groundwater flow patterns. This causes somewhat erratic lateral changes in shallow groundwater chemistry. By comparison, the lateral changes in metal concentrations within the intermediate and deep zones are gradual. With the exception of the area near wells MW-2B, MW-2C, DM-6, and SM-4, the Potomac Formation water-bearing zones generally appear not to be affected by the widely varying concentrations in the overlying shallow zone in the Columbia Formation.

As shown in Figures 14, 16, and 18, the centers of heavy metal concentrations in the intermediate zone is shifted downgradient from the area of high shallow zone concentrations associated with the North Disposal site. The deep zone chemistry data also reflects this same pattern. As most notable for zinc and cadmium, the intermediate and deep zone concentrations at MW-1B and MW-1C are quite low. The highs occur at MW-2B and

MW-2C, then gradually drop down going to MW-4B and MW-4C, and continue dropping at WW-7B and MW-7C. The pumpage history of supply wells WW-11 and WW-13, along with the 0.2 to 0.6 ft/day groundwater flow velocities estimated for the intermediate zone, help to explain this pattern. Apparently, a diffuse plume of elevated metal concentrations introduced into the Potomac Formation by the WW-11 and WW-13 cones of depression has moved downgradient since the 1980 cessation of pumpage. The existing lateral variations probably reflect pumpage variations over time prior to 1980 and heterogeneity in the Potomac Formation sediments.

Thus, with the exception of contaminants introduced into the Potomac Formation due to WW-11 and WW-13 pumpage prior to 1980, the intermediate and deep zones appear to generally act independent of the hydraulics and contaminant problems in the shallow zone.

The TCE and PCE concentrations data presented in Figures 8 through 12 and 19 through 22 generally support the hydrogeologic deductions made from the metals data. The Potomac Formation appears to act hydraulically independent from the Columbia Formation Pumpage from WW-11 and WW-13 apparently induced downward migration into the Potomac Formation of PCE and some TCE from surface sources in the North Disposal site and also probably from operations areas farther to the north and west. When pumpage ceased, normal southerly downgradient movement began within the intermediate and deep zones and parameter concentrations in MW-1B and MW-1C concentrations dropped. One area of exception in the intermediate zone, exemplified by Figures 16, 18, and 22, is near well DM-8. This well still shows elevated zine, barium, and PCE concentrations that have not moved downgradient. This is probably due to, and supports the hydrogeologic concept that DM-8 is in the naturally occurring recharge area of the Site where vertically downward gradients exist and contaminations have continued to move downward after WW-11 and WW-13 pumpage ceased.

One noteworthy anomaly regarding the zinc, TCE and PCE data would be an apparent off-site source proximal to MW-8 at the northwestern corner of the southern tract of land at the Site, west of the property boundary.

3.0 TEST BORING SOILS CHEMISTRY

Soil samples were collected for analytical testing from an average of 14 separate depths in test borings drilled at the seven "TB" locations shown in Figures 23 and 24. Each test boring was completed as a "C" monitoring well screened in the deep water-bearing zone (Hydrostratigraphic Unit IV) and labelled MW-1C thru MW-7C. The analytical results displayed on cross-sections A-A' and B-B' are thus positioned at the appropriate depths at each of the "C" wells (Figures 23 and 24). A summary of the ETC Corporation analytical data showing all detected parameters is presented in Appendix B.

Although split-spoon sampling was conducted at five-foot depths throughout the entire test boring for geologic data, split-spoon samples were typically recovered for analytical testing at five-foot intervals from ground surface to the 40-foot depth, then at 20-foot intervals to the total depth of each test boring, which ranged from 117 to 152 feet. Samples were preserved and sent to ETC Corporation for complete HSL analyses.

The primary purpose of the test boring soil sample collection and analysis was twofold. First, the analytical results from the split-spoon samples provided backup chemistry at the seven locations in case monitoring well completions could not be made for some reason. Second, they provided chemistry for the relatively thin-bedded individual stratigraphic intervals and most of the semi-confining beds in which screened well completions were not attempted and therefore groundwater chemistry could not be obtained.

3.1 PARAMETER DISTRIBUTION

As shown in Table 4 the following organic compounds were detected in soil samples from at least one sample depth in any test boring:

Acetone:

Benzene:

Benzo(a)pyrene;

Bis(2-ethylhexyl)phthalate;

Carbon disulfide: Carbon tetrachloride; Di-n-butyl phthalate: 1,2-Dichlorobenzene; 1,2-Dichloroethane; 1,1-Dichloroethylene Ethylbenzene: Fluoranthene: Methylene chloride; Methyl ethyl ketone: N-Nitrosodiphenylamine; Tetrachloroethylene. Toluene: 1,2-Trans-dichloroethylene; 1,1,1-Trichloroethane; Trichloroethylene; and Xylenes.

Acetone was detected at every test boring in at least one sample depth. Specifically, 42 of the 100 total samples contained acetone above its method detection limit. Since acetone is noted as a common laboratory artifact, results may be misleading.

Bis(2-ethylhexyl)phthalate was detected at five out of 14 sample depths of TB-1 and once very shallow in TB-4. In contrast with TB-4, the compound was not detected at TB-1 in the top 42 feet of the boring. The highest concentration of bis(2-ethylhexyl)phthalate was 4140 ppb located at a depth of 82 feet at TB-1. Di-n-butyl phthalate was detected at every test boring in at least one sample depth. Test borings TB-4 and TB-5 had a greater frequency in detecting the compound. Test borings containing the compound at only one or two sample depths were of higher concentrations of the compound than in TB-4 or TB-5. Concentrations ranged from 610 ppb to 1.8 ppm. Although a precise explanation cannot be confirmed, these phthalates (plasticizers associated with manufacturing of synthetic materials) are not considered indigenous to the soils nor mobilized by site operations or

groundwater movement. Instead, they are considered artifacts of the sampling on analytical procedures.

Carbon disulfide was detected in three test borings south of the river in the shallow zone and at one depth in TB-2 (north of the river) in the semi-confining unit in between the intermediate and deep zones. The highest concentration of carbon disulfide detected was 72.5 ppb in TB-7. This test boring contained carbon disulfide at four shallow sample depths.

Methylene chloride was detected at each test boring location at most sampling depths; 84 percent of all samples contained methylene chloride. Concentrations ranged from its detection limit to 292 ppb. Methylene chloride, like acetone, is noted as a common laboratory artifact and thus may be non-indigenous to soils at the site. The test results could possibly be misleading.

Methyl ethyl ketone (MEK) was detected in five of the seven test borings and thus on both sides of the river. Although the highest concentration of MEK was only 27.3 ppb at the 126-foot depth in TB-6, the detections were distributed variably: from ground surface to bottom in TB-6; in the middle to deep zones in TB-1; in the shallow to middle zones in TB-4; and only near surface in TB-7.

Tetrachloroethylene (PCE) was only detected once in TB-1 but ten times in TB-2. The highest concentration was 767 ppb in TB-2 at the 17-foot depth and all ten detections occurring in the shallow and middle depths. These PCE soils data support a possible on-site source of PCE suggested by the groundwater chemistry data.

The remaining organic parameters were detected relatively infrequently. 1,2-Dichloroethane was detected in TB-4 and TB-6 at three sampling depths each. The highest concentration found was 26.1 ppb. N-Nitrosodiphenylamine was detected once in TB-3 at 17 feet. Fluoranthene was detected once in TB-7 at 2 feet. Benzene; benzo(a)pyrene; carbon tetrachloride; 1,2-dichlorobenzene; 1,1-dichloroethylene; ethyl benzene; toluene; 1,2-transdichloroethylene; 1,1,1-trichloroethane; trichloroethylene; and xylenes were detected only at

-18-

TB-2 and only in a few sampling depths. Most of those organic parameters which we detected in TB-2 probably reflect materials involved in on-site operations at some time in the past. If any future soils investigation of the source of organics in the "plant" area is necessary, PCE should be considered a target parameter.

Table 5 lists three metals whose concentrations in test borings were greater than the United States Geological Survey (USGS) mean concentration of metals for cultivated and uncultivated B horizon soils in the Eastern United States. The metals were barium, cadmium, and zinc. Elevated barium levels were detected in TB-1, TB-4, TB-5 and TB-7. TB-4 had the most frequent detection above background levels and the highest concentrations, which occurred in the 7 to 22-foot depth range.

Cadmium was found in concentrations above background levels in all seven test borings at variable depths. The high concentrations were detected in TB-4 in the 7 to 12-foot depth range. No other strong relationship between depth and concentrations existed, although a number of the slightly higher than average detections occurred in the upper semi-confining zone (Unit II).

Zinc was present in all test borings above the USGS soil mean. Greater concentrations of zinc occurred in TB-4 at the 7 and 12-foot depths, with the highest being 18,200 ppm. All other metal concentrations were considered associated with the indigenous rock forming minerals.

The use of mud rotary drilling over some depth intervals in most of the test borings inherently allows for the transfer of metals and other parameters from the drilling fluid to the split-spoons. A relatively dramatic example of this appears to occur at TB-4 where mud rotary drilling was used for the entire length of the borehole. The high barium concentrations in the South Disposal site fill were apparently carried down by the drilling fluid to a depth of 15 to 20 feet and consequently showed up in the soil samples; whereas fill material was not encountered in TB-4 below the 10-foot depth.

3.2 RELATIONSHIP OF SOILS CHEMISTRY TO GROUNDWATER CHEMISTRY

The frequent and shallow high concentrations of PCE in TB-2 corresponded well with the PCE concentrations detected in the groundwater at wells MW-2A, 2B, and 2C. No other prominent correlations regarding organics were observed.

Among the metals detected above background, cadmium levels were much more abundant than barium and zinc in the soils; whereas, this pattern was not apparent in the groundwater. The slightly elevated and ubiquitous cadmium levels in the soils at the Site are considered to reflect possible locally high natural cadmium levels in the Columbia and Potomac Formations. Although no prior soils data exist to confirm these natural cadmium concentration levels, the hydrogeologic data from this study do not support extensive mobility of cadmium.

For example, there is very little cadmium in the deep zone groundwater samples, but the soils from those depths contain cadmium concentrations similar to shallower soils. Cadmium mobility would be expected to be complemented by comparable zinc and barium mobility, which is not seen in the data. Because the soil data, in fact, suggest the presence of slightly elevated levels of cadmium, without measurable zinc or barium, the possibility of elevated natural levels of cadmium in the soils is, therefore, plausible. Furthermore, the lithologic heterogeneity of the source material for the Potomac Formation does not preclude such anomalous cadmium concentrations.

In addition, the barium concentration at the 2-foot depth in TB-7 corresponds with common high metal concentrations in the shallow groundwater zone. The consistently high barium levels in TB-4, which stop abruptly at the base of the shallow groundwater zone, also suggest that the Columbia Formation groundwater discharges to the Christina River and does not move downward into the Potomac Formation water-bearing zones.

No noteworthy anomalies in the soil chemistry of the semi-confining zones, or other stratigraphic intervals not screened by the monitoring wells, were apparent from these data, other than the cadmium concentrations addressed above.

4.0 CHRISTINA RIVER WATER CHEMISTRY

A sample of Christina River water was collected at the James Street Bridge each hour for 12 hours, approximately one tidal cycle, beginning at 6:00 AM, August 13, 1987. Samples 1 (7:00 AM) to 6 (11:00 AM) are ebb tide samples. Samples 7 (12:00 PM) to 12 (5:00 PM) are flood tide samples. Samples were collected in accordance with QA/QC procedures and analyzed for HSL parameters. The purpose of the investigation was to provide data on the dissolved and suspended contaminant load of the surface waters of Christina River with respect to the stage of tide. The stage of tide was observed to coincide approximately the direction of tidal flow, that is, tidal currents reversed at the high and low stands of water. The complete analytical results are shown in Appendix C.

4.1 PARAMETER DISTRIBUTION

The following seven contaminants were found in surface waters of the Christina River in levels exceeding federal standards for the protection of human health and/or aquatic life from the sampling conducted in August 1987:

Cadmium;
Chromium;
Copper;
Lead;
Zinc;
2,4-Dinitrotoluene; and
Tetrachloroethylene.

Twelve samples were analyzed for HSL parameters. Six organic parameters were detected in one of the samples, the second sample taken at 7:00 AM, near the start of the outgoing, or ebb, tide, with concentrations that ranged from 28 to 70 ppb. The identified contaminants included 1,2,4-trichlorobenzene; 1,4-dichlorobenzene; 2-chlorophenol; phenol; n-nitrosodi-n-propylamine; 2,4-dinitrotoluene; acenaphthene; and p-chloro-m-cresol. Tetrachloroethylene was detected (11.4 ppb) at 3:00 PM, at the end of the incoming, or flood, tide.

Of the heavy metals on the HSL test, barium, cadmium, chromium, copper, lead, and zinc were detected in one or more samples. Table 6 provides a summary of the heavy metals identified in the samples collected.

4.2 EVALUATION

Samples were collected during approximately one tidal cycle; thus, the results of analyses can be used to suggest the sources of the HSL parameters identified, as well as the chemical constituents of river water that are affected little by local effects of runoff or groundwater discharge to the system.

Figure 25 compares tidal stage with the concentrations of sodium and lead, and it shows the time that organic chemicals identified previously were detected. Sodium is a conservative component of water, which means that once it dissolves in water it neither adsorbs onto sediments, precipitates (except on salt flats), nor otherwise leaves the aqueous system. Its presence in Christina River water, at less than one-thousandth the concentration of normal sea water, is presumed to represent dilution by runoff to the Christina River of estuarine Delaware Bay water. Thus, it would be expected that Christina River water would become more saline towards its mouth and fresh near its headwaters. The data of sodium collected during the tidal cycle are consistent with predicted changes in sodium concentration during a tidal cycle. During the ebb, the concentration of sodium decreased as upstream (fresher) water passed the James Street Bridge; and, conversely, the concentration of sodium increased as downstream (saltier) water passed the bridge.

The concentration of lead differed from that of sodium. Lead was detected only in four samples during the ebb. These data suggest that there was an upstream source of lead, possibly drainage from an upstream tidally flooded area. Further, lead measured during the ebb either was not detected during the flood tide, suggesting either that dilution to below detection levels occurred, or that lead was removed from the aqueous system, possibly by changes in pH and redox potential. As discussed subsequently, barium was reduced by about 25 percent; thus, dilution is not the likely reason for the absence of lead during the flood tide.

-22-

The concentration of barium (Appendix C) ranged from approximately 75 ppoto 100 ppb. The concentrations of barium, increased during the ebb tide, and decreased during the flood tide. An upstream source of barium is suggested, which is likely to be stream sediments or runoff from tidally flooded areas. The reduction in barium concentration during the flood tide, about 25 percent, probably represent the loss by dilution and mixing downstream at the James Street Bridge.

The occurrence of eight organic parameters in one sample during the ebb tide suggests a "slug" of water with an upstream source. The total concentration of the eight parameters exceeded 300 ppb, but none of these parameters was detected in other samples.

None of the other heavy metal parameters detected displays a pattern of concentration that can easily be attributed to tidal flow or to possible upstream sources. Cadmium, copper, and chromium are present in low concentrations, and the maximum concentration was 12 ppb. The concentration of zinc varied significantly over time, from 82 to 287 ppb during the tidal cycle, but with no discernable pattern.

5.0 CHRISTINA RIVER SEDIMENT CHEMISTRY

Sediment samples were collected at six locations in the Christina River from the surface to a depth of about three feet (Figure 26). All sediment samples were analyzed for HSL components (Appendix D). The detected parameters from each of the samples include organic and inorganic components. Methylene chloride, acetone, and oil and grease were identified consistently in samples upstream of landfill, at the landfill, and downstream of landfill, in fairly consistent concentrations (Figure 27). The other organic components were identified at various locations. (Methylene chloride and acetone are common laboratory artifacts and their reported presences may be misleading.)

The distribution of barium, cadmium, and zinc in collected samples were similar (Figures 28, 29, and 30). The highest concentrations of each occurred in the vicinity of the North Disposal site and the tide gate of the South Disposal site with lesser concentrations up-and down-stream of this area. At locations 2A and 2B the concentrations of these

parameters were lower at the surface (0 to 1 feet) than at greater depths. This probably reflects the decreased runoff of soils from the Site due to capping of the North Disposal site after landfilling ceased in 1974.

The detected organic chemicals show no discernable distribution pattern that can be related to the Site, and there is no evidence suggesting a Site origin. Rather, they are probably related to nearby industrial activity, as well as roadway runoff, and have accumulated throughout the river. No data from groundwater or soils suggest a relationship to the measured organic parameters.

The measured concentrations of barium, cadmium, and zinc in river sediment appear to be attributed to past activities at the Site. The higher concentration of these parameters in the vicinity of the North Disposal site and the tide gate at the South Disposal site suggest a source either from the north or south side of the river, or from both sides. Further, the vertical increase in concentrations suggest that these parameters no longer are being introduced to the riverine system and that the introduction is much reduced from previous times. The reduction in concentration of metals up- and down-stream suggests that currents have redistributed these components. The extent to which these metals have been carried away from the Site is not discernable from these existing data.

6.0 SOUTH DISPOSAL SITE FILL CHEMISTRY

Soil fill samples were collected from eight test pits in the South Disposal site in December 1987 (see Figures 31, 32, and 33) and analyzed for EP toxicity metals and reactive sulfide. Samples collected from test pits TP-2 through TP-8 were also analyzed for the Hazardous Substance List (HSL) (Appendix E). Results are summarized in Tables 7 and 8 respectively.

EP toxicity results indicate exceedance of the RCRA alert level for barium (100 mg/1) for four samples. These four samples were collected from the lithopone waste in TP-1, TP-3, TP-6, and TP-8. Cadmium was measured above detection limits in TP-5 (0.84 mg/l), but did not exceed the RCRA alert level of 1 mg/l. The EPA action level of 500 mg/kg

for reactive sulfide was exceeded in lithopone samples from test pits TP-1, TP-3, TP-4, TP-6, and TP-8. This RCRA parameter is used to measure the reactivity of a waste material.

Results of the HSL analyses are presented in Table 8. Only compounds measured above detection limits are presented. Seven organics were found above detection limits at relatively low concentrations. Several metals were found at elevated levels. They include cadmium, barium, lead, and zinc.

The mobility of these detected parameters in the South Disposal site fill into the groundwater system relates to their respective concentrations found in the groundwater samples in the monitoring wells. As discussed in the groundwater chemistry section, the South Disposal site appears responsible for sourcing the heavy metals found in the shallow zone, but not in the intermediate and deep zones.

Tables

TABLE 1

HYDROSTRATIGRAPHIC UNITS Du Pont Newport Site

<u>Unit</u>	Lithologic Appearance	Depth Range to top of Unit	Unit Range of Thickness
I	Shallow Zone. (Columbia Formation; Pleistocene) Clastics, yellow brown to orange sands and clays. Usually clayey near land surface, grading coarser with depth. This unit often contains a gray-black organic clay.	0	25-34
II .	Semi-Confining Unit. (Top of Potomac Formation; Cretaceous) Marked by the first appearance of white-gray sand or reddish to orange sandy clays. Appears to be an effective semi-confining unit separating Unit I and Unit IIIA.	25-34	23-40
III _A	Intermediate Zone. Clayey sand unit, consisting of clayey sands in the upper section grading to a more clayey unit with depth. Sands range from fine to medium grained with varying clay content. Color ranges from red to orange to yellow.	53 – 66	13-37
III _B	Semi-Confining Unit. This unit is very similar to IIIA in color and shows interfingering of units except that the clay content increases significantly in the lower portion of this unit. The top of this unit is marked by a violet-red, manganese-stained clay. Appears to be an effective semi-confining unit separating Units IIIA and IV.	75 - 93	10-39
IV	Deep Zone. Usually contains a white and light gray to orange medium clayey sand, up to ten feet in thickness overlying the bedrock. This unit may contain red dense clays and/or black organic-rich layers generally less than 18 inches thick.	90-113	15-30
V	Decomposed Bedrock. Olive green, friable, weathered schist and gneiss occasionally overlain by off-white clay. Probable low permeability; unit probably acts as base to active flow system.	110-140	10-40+

TABLE 2

GROUNDWATER SAMPLING SUMMARY
Du Pont Newport

Well Number	August, 1987	December, 1987
SM-1	Yes	No
SM-2	Yes	Yes
SM-3	Yes	Yes
SM-4	Yes	Yes
SM-5	Yes	Yes
DM-4	Yes	No
DM-6	Yes	Yes
DMU-7	Yes	Yes
DML-7	Yes	Yes
DM-8	Yes	Yes
WW-11	No	Yes
WW-13	No	No
MW-1A	Yes	Yes
MW-1B	Yes	Yes
MW-1C	Yes	Yes
MW-2A	Yes	Yes
MW-2B	Yes	Yes
MW-2C	Yes	Yes
MW-3A	Yes	Yes
MW-3B	Yes	Yes
MW-3C	Yes	Yes
MW-4A	Yes	Yes
MW-4B	Yes	Yes
MW-4C	Yes	Yes
MW-5A	Yes	Yes
MW-5B	Yes	Yes
MW-5C	Yes	Yes
MW-6A	Yes	Yes
MW-6B	Yes	Yes
MW-6C	Yes	Yes
MW-7A	Yes	Yes
MW-7B	Yes	Yes
MW-7C	Yes	Yes
MW-8	Yes	Yes
MW-9	Yes	Yes
MW-11	Yes	Yes
MW-13	Yes	Yes
MW-14	Yes	Yes
MW-15	Yes	Yes
*Necastro A	No	Yes
*Necastro B	No	Yes
TOTALS	37	38

^{*} Residential well located on Old Airport Road proximal to Du Pont property. WM-44A

TABLE 3

WELLS WHOSE PARAMETERS EXCEED USEPA DRINKING WATER MAXIMUM CONCENTRATION LEVELS (MCL) Du Pont Newport

Parameter	MCL (ppb)	No. of Wells North Site	No. of Wells South Site	Highest Concentration detected (ppb)	Monitorin Well
Barium, Total	1000	2	7	177,000	MW-15
Cadmium, Total	10	11	14	640	SM-4
Chromium, Total	50	4	4	120	SM-4
4,4'-DDD	$0.001^{(2)}$	2	0	5.62	MW-2A
4,4'-DDT	$0.001^{(2)}$	1	0	0.54	MW-2A
1,2-trans-Dichloroethylene	70	1	1	140	SM-5
Iron, Total	300	14	20	178,000	MW-11
Lead, Total	50	4	5	700	MW-14
Manganese, Total	50	13	17	27,700	SM-4
Sodium, Total	$50,000^{(2)}$	1	2	176,000	SM-4
Tetrachloroethylene	0(1)	11	4	5600	MW-2A
Trichloroethylene	5	6	. 3	570	SM-5
Zine, Total	5000(2)	4	2	167,000	SM-4

⁽¹⁾ RMCL = Recommended Maximum Concentration Levels (USEPA) in Drinking Water

⁽²⁾ Standard established by the NJDER and NYSDEC

TABLE 4

ORGANIC COMPOUNDS DETECTED
IN TEST BORINGS
Du Pont Newport

Compound	Test Boring Locations Detected above MDL*	Frequency of Detection	Highest Concentration Detected (ppb)
Acetone	TB-1	14:14	61.7
110010110	TB-2	14:14	88.9
	TB-3	7:15	18.0
	TB-4	13:14	280.0
	TB-5	2:15	220.0
	TB-6	14:15	107.0
	TB-7	9:13	77.9
Benzene	TB-2	1:14	6.54
Benzo(a)pyrene	TB-2	1:14	1130
Bis(2-ethylhexyl)phthalate	TB-1	5:14	4140
	TB-4	1:14	3160
Carbon Disulfide	TB-2	1:14	11.1
	TB-4	1:14	51.1
	TB-6	1:15	10.5
	TB-7	4:13	72.5
Carbon Tetrachloride	TB-2	1:14	20.1
Di-n-butyl phthalate	TB-1	2:14	1340
	TB-2	1:14	1810
	TB-3	2:15	1000
	TB-4	4:14	790
	TB-5	6:15	610
	TB-6	1:15	1800
	TB-7	2:13	800
1,1-Dichloroethylene	TB-2	1:14	17.8
1,2-Dichloroethane	TB-4	3:14	26.1
	TB-6	3:15	15.3
Ethylbenzene	TB-2	1:14	7.32
Fluoranthene	TB-7	1:13	426
WM-44A			

TABLE 4 (continued)

Compound	Test Boring Locations Detected above MDL*	Frequency of Detection	Highest Concentration Detected (ppb)
Methylene chloride	TB-1	14:14	238.0
•	TB-2	13:14	160.0
	TB-3	15:15	16.0
	TB-4	13:14	76.7
	TB-5	10:15	27.0
	TB-6	15:15	292.0
	TB-7	12:14	63.0
Methyl ethyl ketone	TB-1	5:14	15.7
	TB-2	1:14	12.6
	TB-4	9:14	69.9
	TB-6	6:15	27.3
	TB-7	2:13	13.3
N-Nitrosodiphenylamine	TB-3	1:15	490
Tetrachloroethylene	TB-1	1:14	83.1
	, TB-2	10:14	767
Toluene	TB-2	1:14	7.62
1,2-Trans-dichloroethylene	TB-2	3:14	1060
1,1,1-Trichloroethane	TB-2	1:14	17.8
Trichloroethylene	TB-2	2:14	35.5
Xylenes	TB-2	1:14	11.4

^{*} MDL = Method Detection Limit

TABLE 5

METALS DETECTED IN TEST BORINGS ABOVE BACKGROUND LEVELS Du Pont Newport

Metals	Boring	Exceedance Frequency	Average Concentration (ppm)	Highest Concentration (ppm)
Barium	TB-1	1:14	60.00	351
	TB-4	7:14	2866.93	19,300
	TB-5	1:15	51.05	314
	TB-7	2:13	303.68	3240
Cadmium	TB-1	4:14	0.92	3.2
	TB-2	10:14	2.66	9.0
	TB-3	9:15	2.76	11
	TB-4	11:14	44.03	433
	TB-5	13:15	3.63	12
	TB-6	13:15	3.69	8.1
	TB-7	11:13	3.79	8.8
Zine	TB-1	4:14	34.59	132
	TB-2	8:14	58.28	220
	TB-3	1:15	16.15	47
	TB-4	8:14	1832.46	18,200
	TB-5	3:15	25.92	116
	TB-6	4:15	25.79	88
	TB-7	2:13	20.28	94

Soil Mean _(ppm)
300.0
1.0
36.0

* United States Geological Survey mean concentration of cultivated and uncultivated soils in the Eastern United States B Horizon, in "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States." Connor, J.J. and Shacklette, H.T., U.S. Government Printing Office; Washington, D.C.; 1975.

TABLE 6

SUMMARY OF HEAVY METALS IN CHRISTINA RIVER WATER (August 13, 1987)

Metals	Mean	<u>Minimum</u>	Maximum	Standard Deviation
Arsenic	ND in all samples			
Barium	91.3	74	101	9.2
Beryllium	ND in all samples		•	
Cadmiuma,b	2.7	4.2	9.6	2.4
Chromium ^b	7.7	4.5	12.0	2.3
Cobalt	ND in all samples			
Copper ^b	6.8	3.9	12.0	2.4
Lead ^b	15.1	1.7	72.0	22.1
Nickel	ND in all samples			
Silver	ND in all samples			
Zine	117	82	287	57.4

Notes:

Concentrations in ug/l

- a) One value greater than detection level.
- b) Where one or more values are BMDL, the assumed concentration is one-half of the detection level.

TABLE 7

SUMMARY OF EP TOXICITY METALS AND REACTIVE SULFIDE DETECTED IN TEST PIT SAMPLES SOUTH DEPOSAL SITE PILL

Parameter	Method Detection Limit	TP-1 Lithopone	TP-2 Fill Cover	TP-3 Lithopone	TP-4 Lithopone	TP-5 Fill Cover	TP-6 Lithopone	TP-7 Lithopone	TP-8 Lithopone
Barium (mg/1)	ស	2,000	ND	2,390	38	ND	1,710	11	1,290
Cadmium (mg/l)	0.2	ND	ND	ND	ND	0.84	ND	ND	ND
Reactive Sulfide (mg/kg)	ß	2,900	QN	24,500	830	QN	27,000	ND	1,760

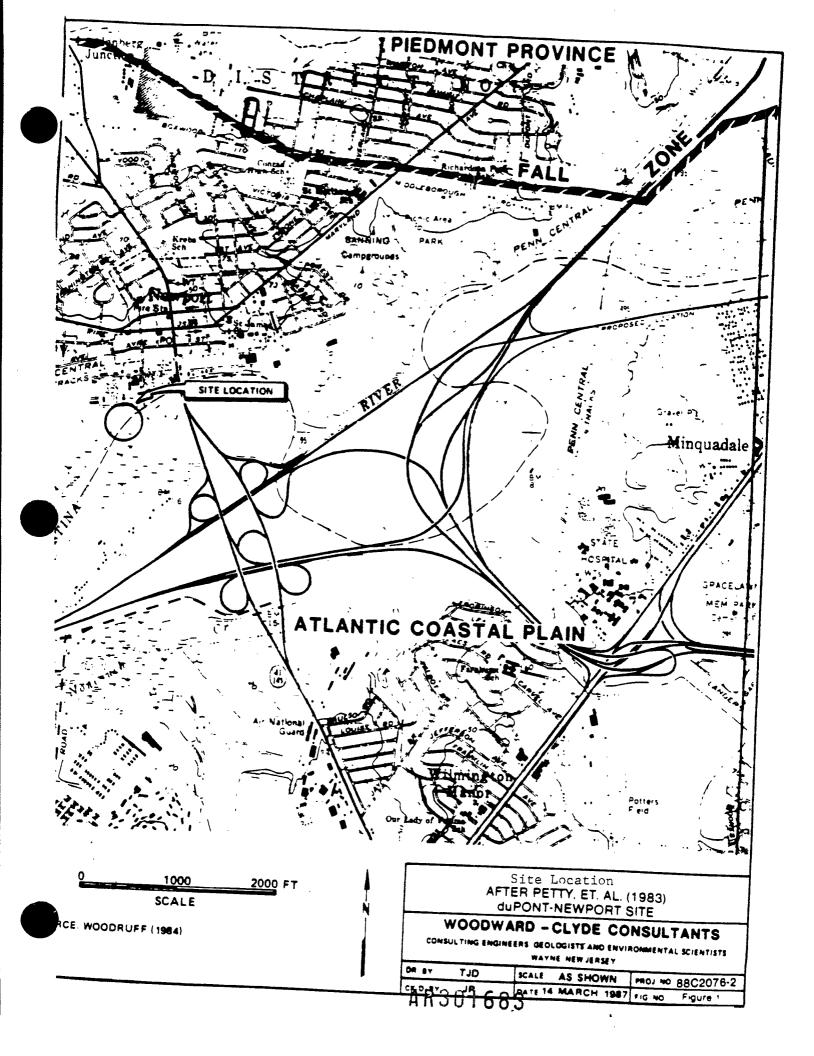
ND = Not detected/below detection limit

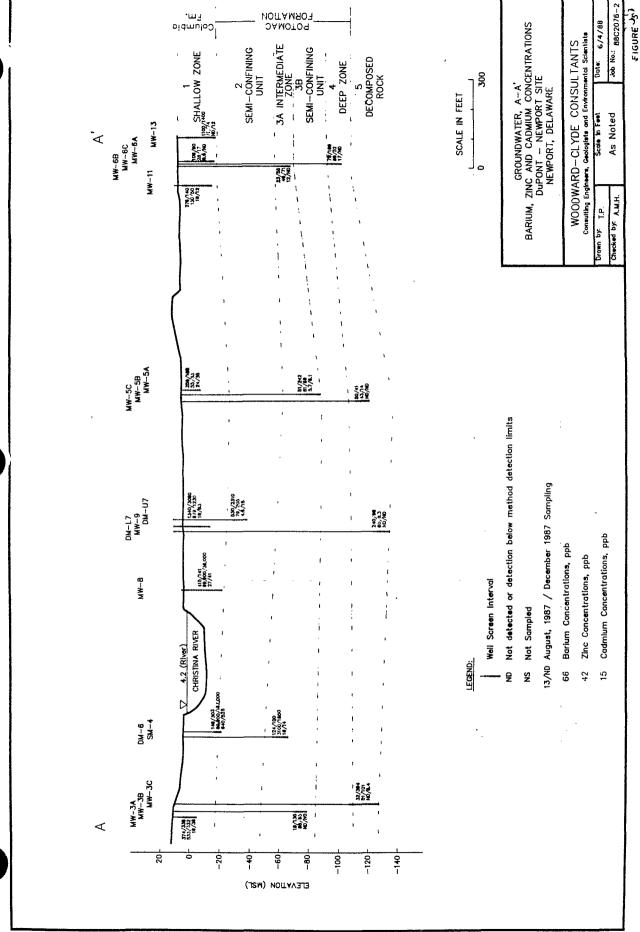
AR301680.

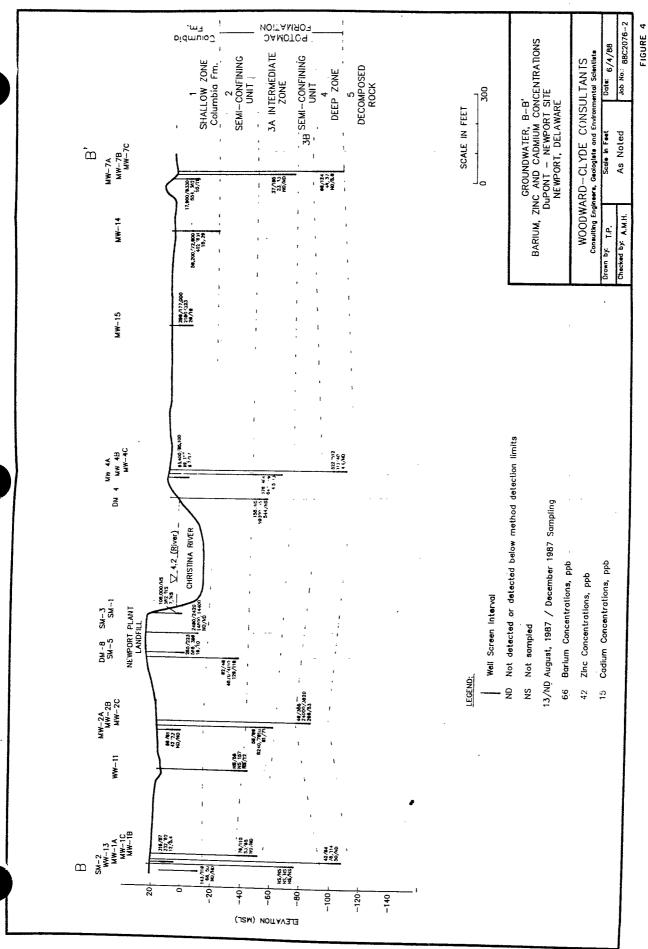
TABLE 8 SUMMARY OF HAZARDOUS SUBSTANCE LIST COMPOUNDS AND METALS DETECTED IN TEST PIT SAMPLES SOUTH DESPOSAL SITE FILL

Parameter	CRDL	TP-2 Fill Cover	TP-3 Lithopone	TP-4 Lithopone	TP-5 Fill Cover	TP-6 Lithopone	TP-7 <u>Lithopo</u> ne	TP-8 Lithopone
	(ug/kg)	(ug/kg)	<u>(ug/kg)</u>	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Methylene Chloride	5	6 B	9 BJ	30 B	6 B		-	
Acetone	22	4 BJ	15 BJ	12 BJ	11 BJ	14 B	9 B	6 B
Carbon Disulfide	11	ND	20	7 J	3 BJ	ND	23 B	9 BJ
Benzene	10	ND	ND	ND	3 <i>B</i> 3	15	3 J	6
Phenanthrene	660	ND	ND	ND	ND	ND	9	5 J
Benzo(a)Anthracene	660	ND	ND	ND		540 J	2 J	ND
2-Butanone	20	ND	ND	ND	ND	230 J	ND	ND
				ND	ND	ND	7 J	ND
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	2.7	4,530	11,700	20,600				
Arsenic	0.12	1.6	50	20,800	11,600	16,000	14,600	17,900
Barium	0.10	856	3,100	3,370	12	30	5.4	10
Beryllium	0.10	0.29	1.3	1.0	19,800	66,200	1,530	71,300
Cadmium'	0.48	4.1	183	30	0.74	1.6	1.2	1.0
Calcium	0.51	704	8,290	820	58	294	9.9	14
Chromium	0.54	15	45		4,790	5,980	1,500	705
Cobalt	0.42	4.7	63	102	33	47	33	32
Copper	0.24	6.5	2950	115	4.6	12	23	0.93
Iron	0.63	9,580	7,420	321	324	1,970	18	73
Lead	0.08	17	Ť	74,400	28,400	54,200	22,100	24,900
Magnesium	0.10	1,080	10,800	771	1,520	5,780	35	43
Manganese	0.15	1,000	1,810	256	1,870	1,050	3,900	923
Mercury	0.02		4,030	536	1,820	3,580	835	1,230
Nickel	1.30	0.06	1.5	ND	0.34	0.54	0.17	ND
Potassium	9.40	11	95	119	49	113	35	95
Selenium		555	543	1,870	971	390	2,220	1,300
Silver	0.19	ND	3.1	ND	ND	1.1	ND	ND
Sodium	0.24	ND	9.0	52	3.4	7.2	0.48	2.0
Vanadium	1.90	48	151	281	74	119	122	196
Zinc	0.27	19	79	164	44	69	39	56
0	0.48	49	14,200	1,490	2,810	16,000	1,080	283

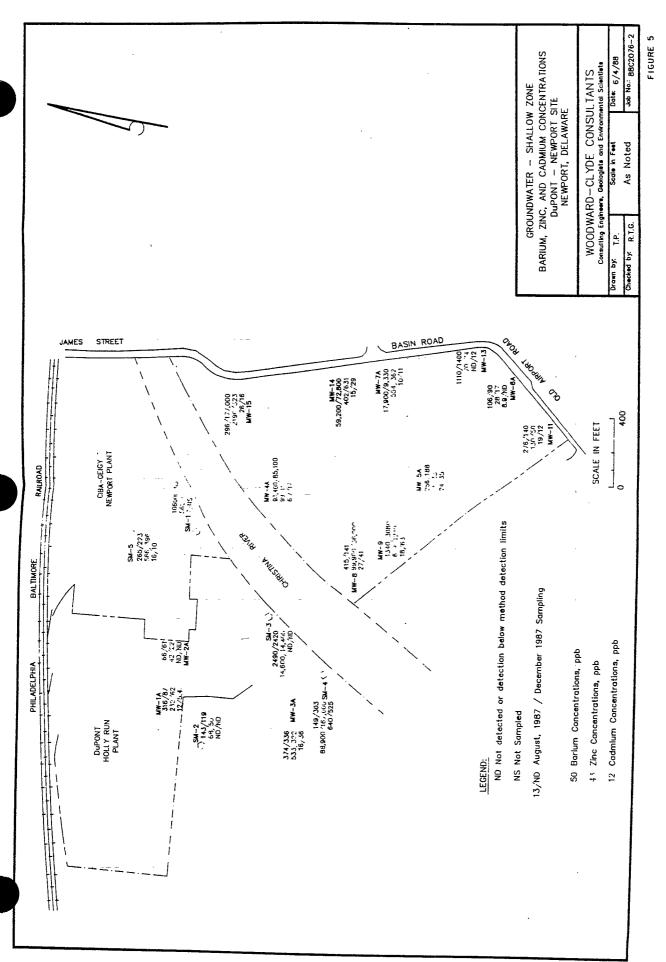
ND = Not detected

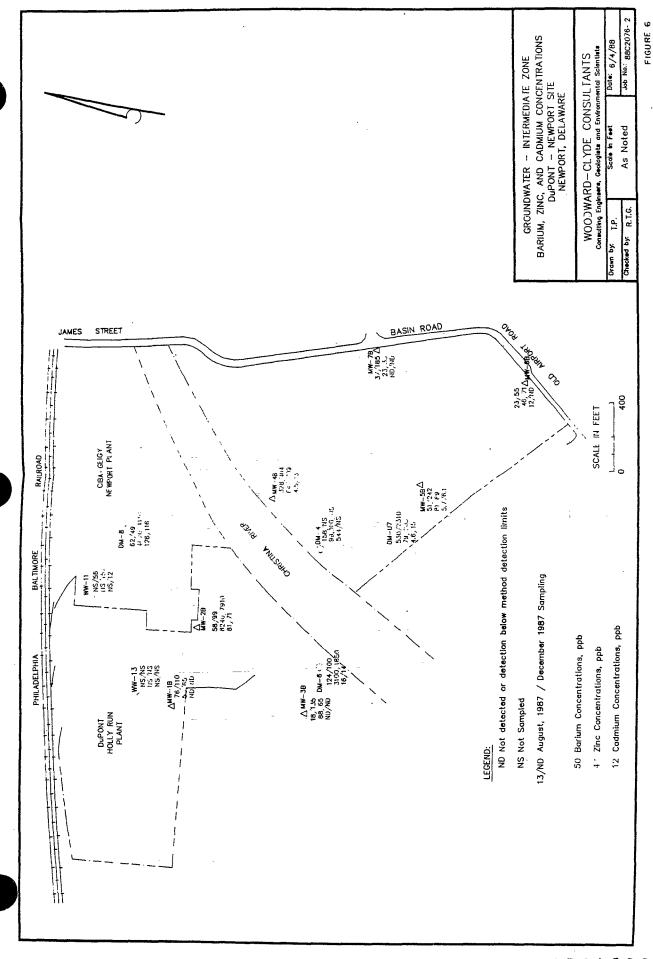

CRDL = Contract Required Detection Limit

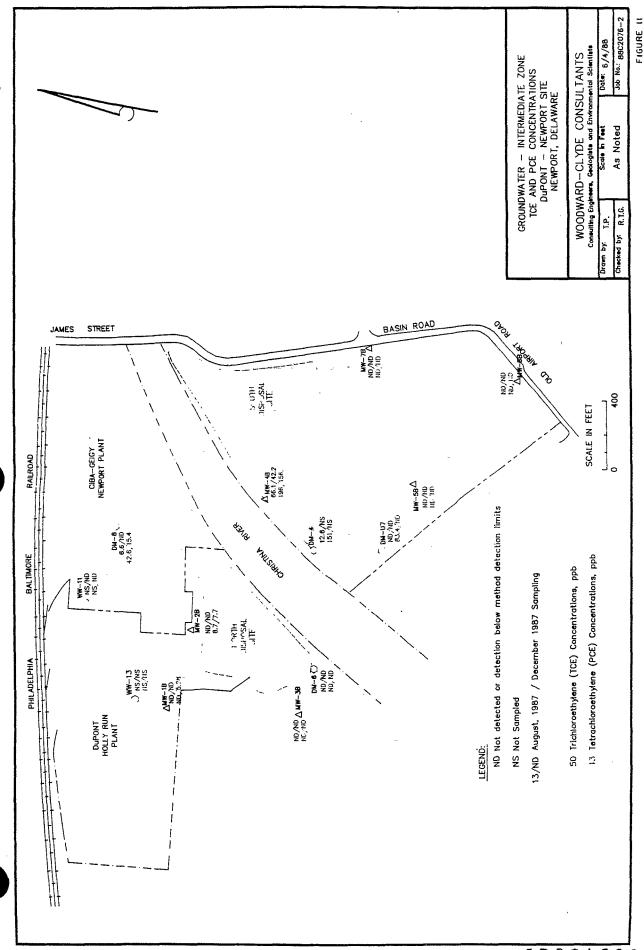

B = Compound was detected in the QC Blank


J = Reported value is less than detection limit

Note: Test pit TP-1 samples were not analyzed for HSL compounds.

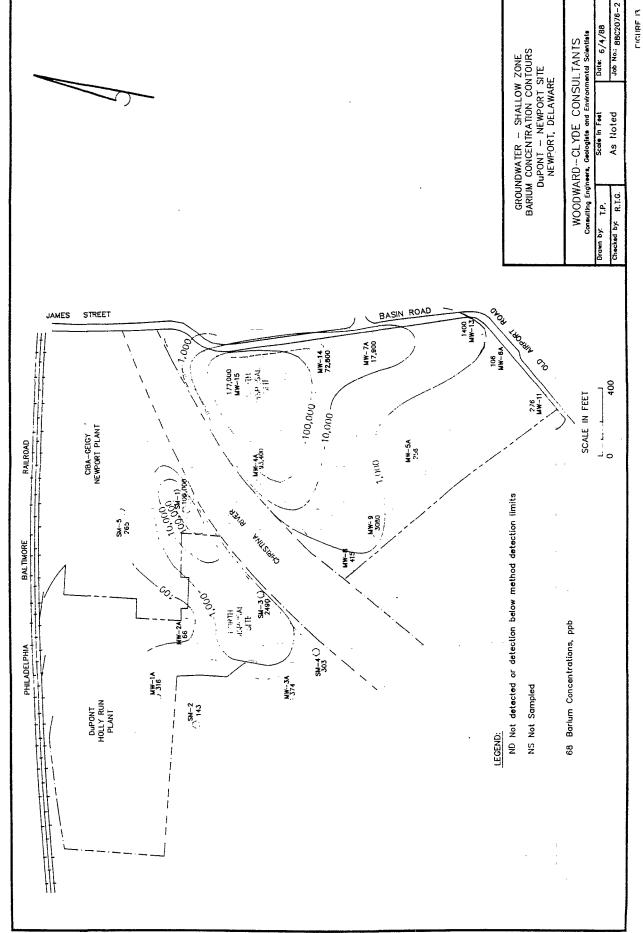

Figures

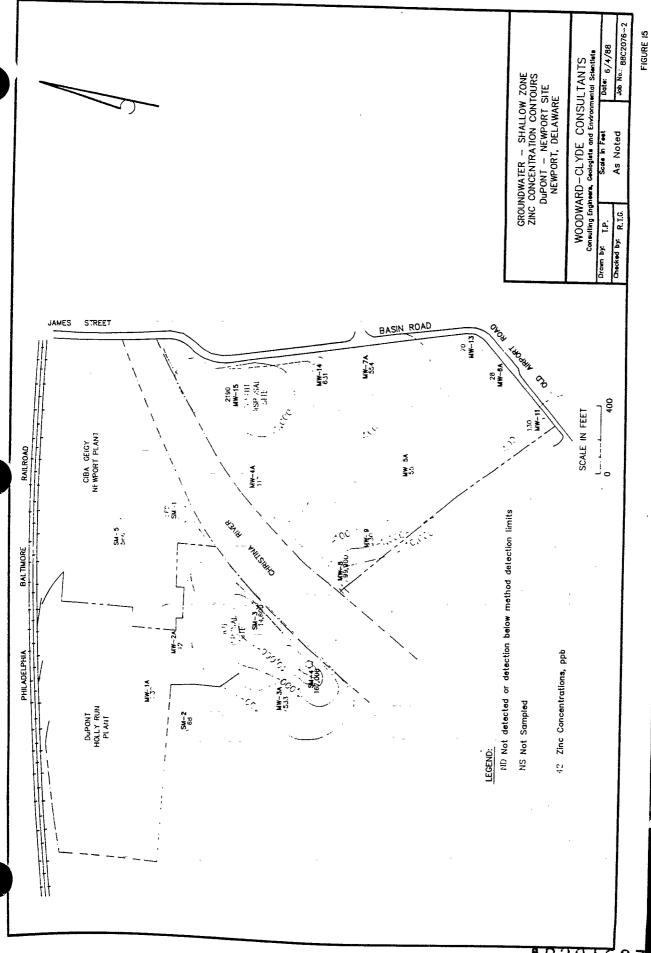




AR301686

AR301687



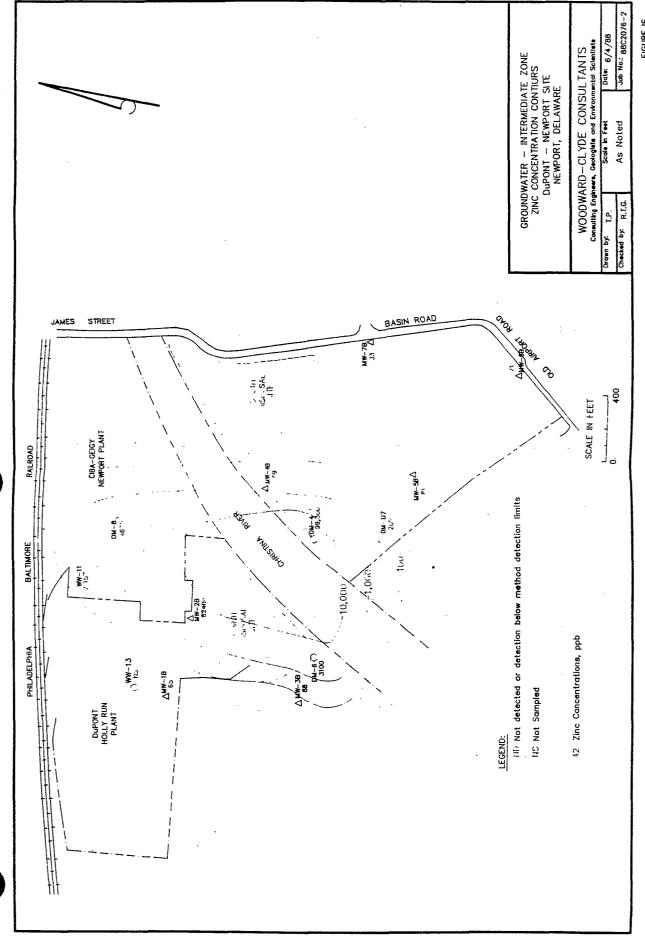
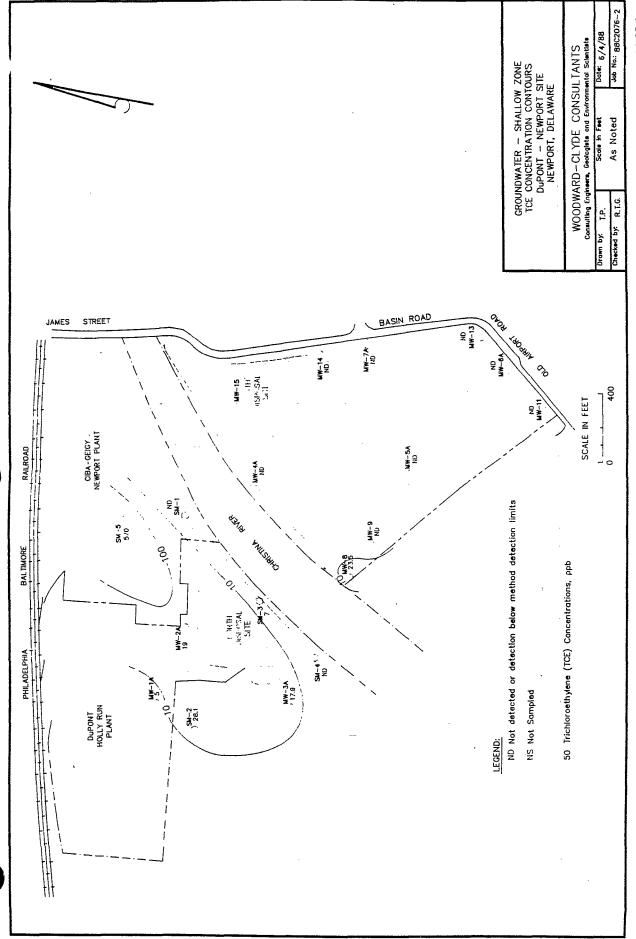


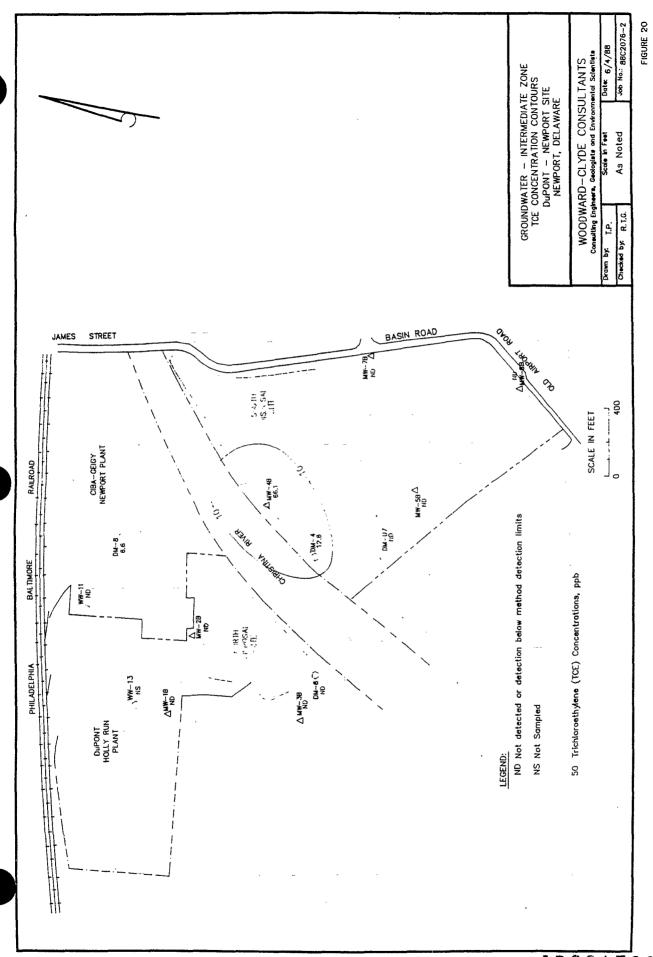
AR301693

AR301694

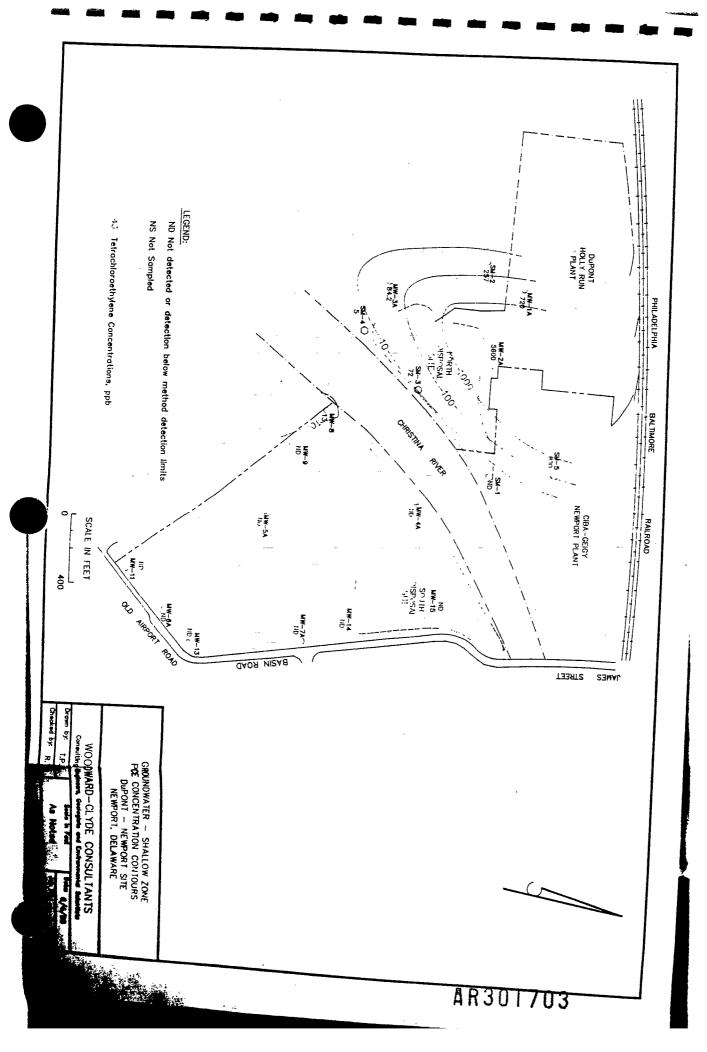
FIGURE 12

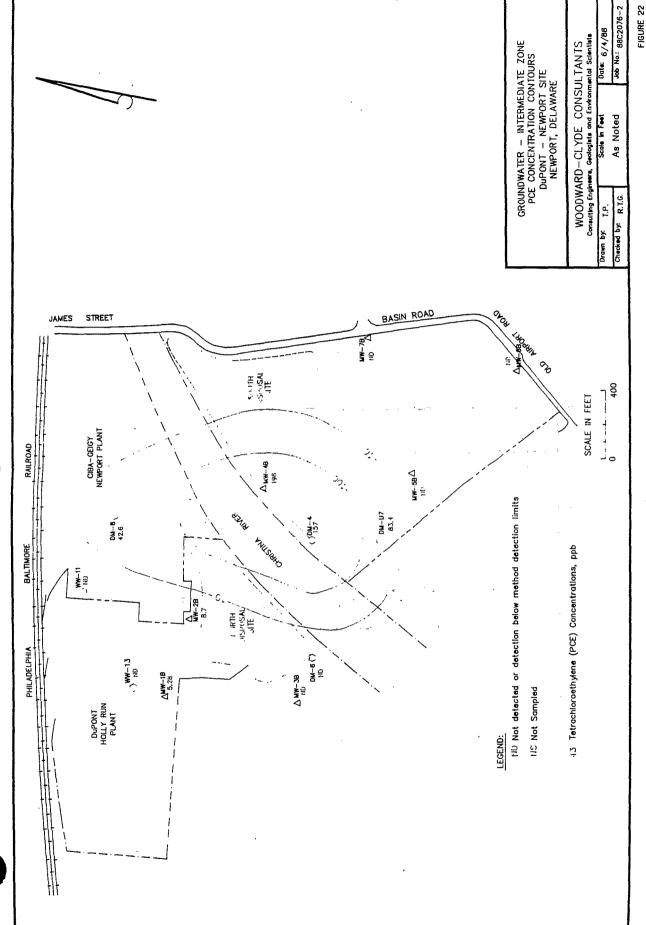
AR301697

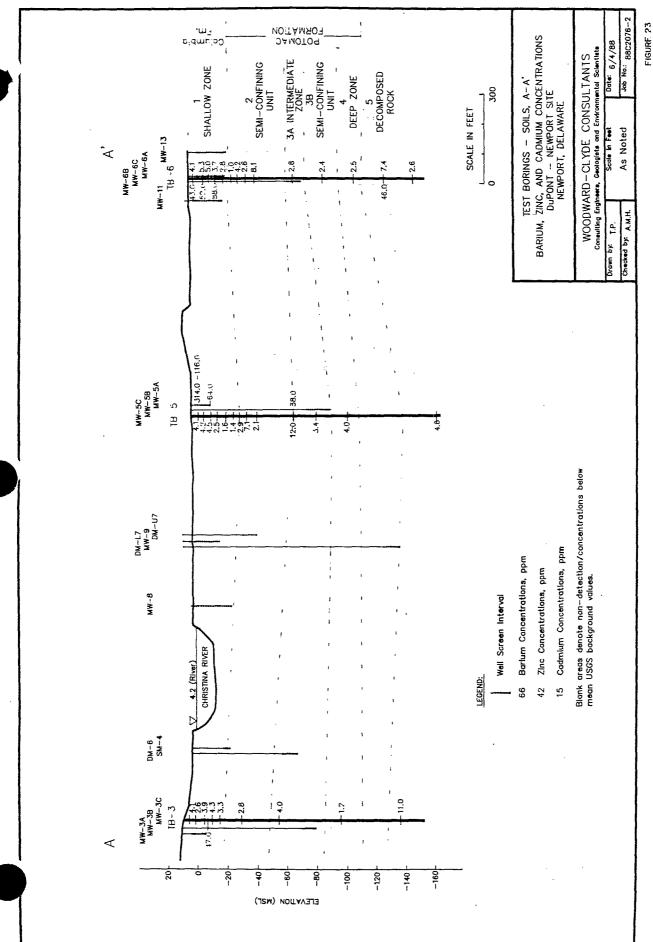



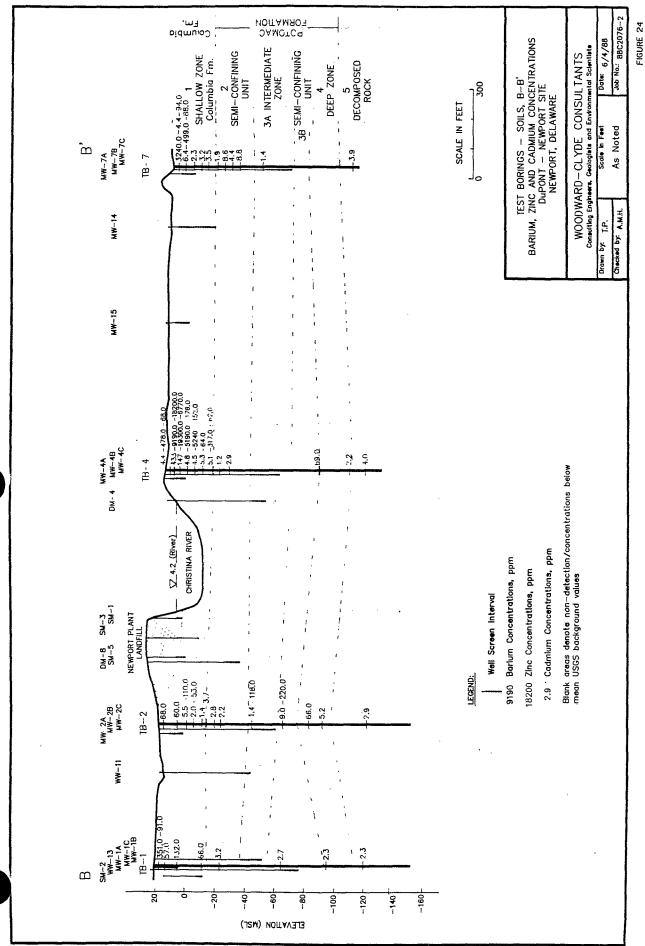

FIGURE 17

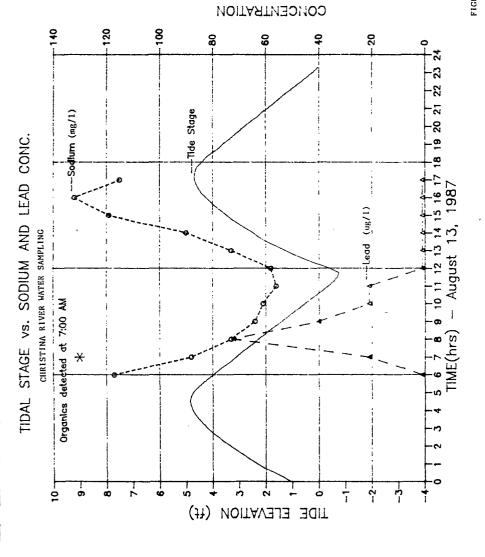
_AR301700

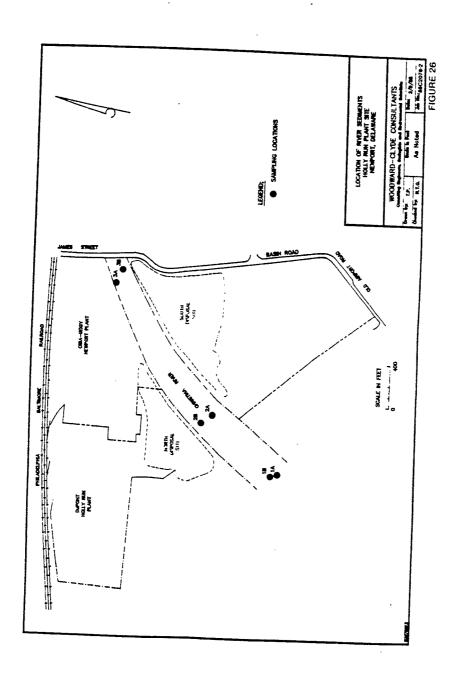

FIGURE 18

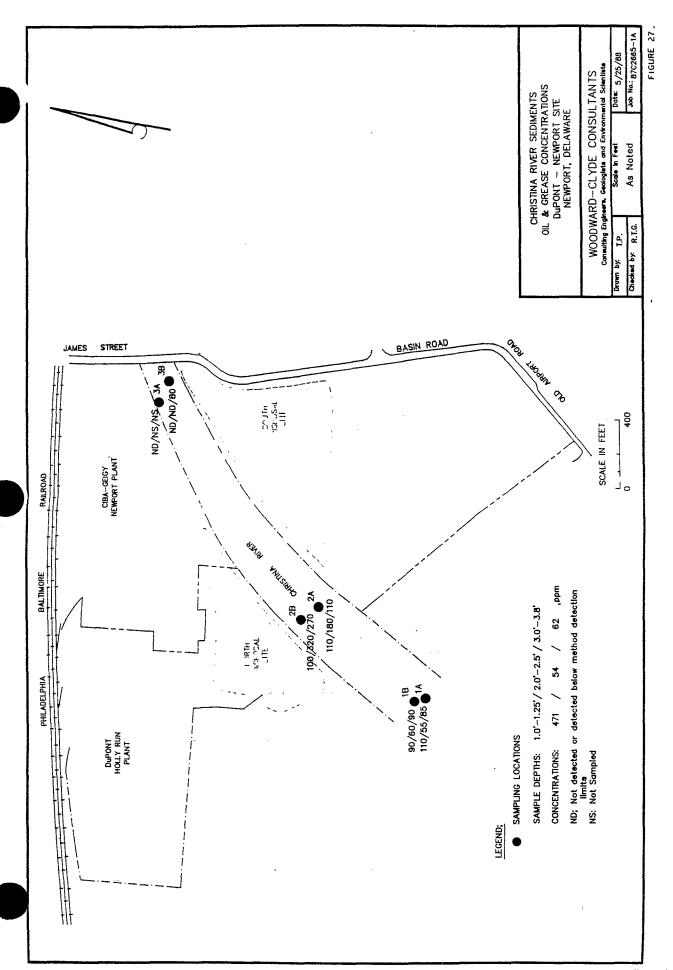


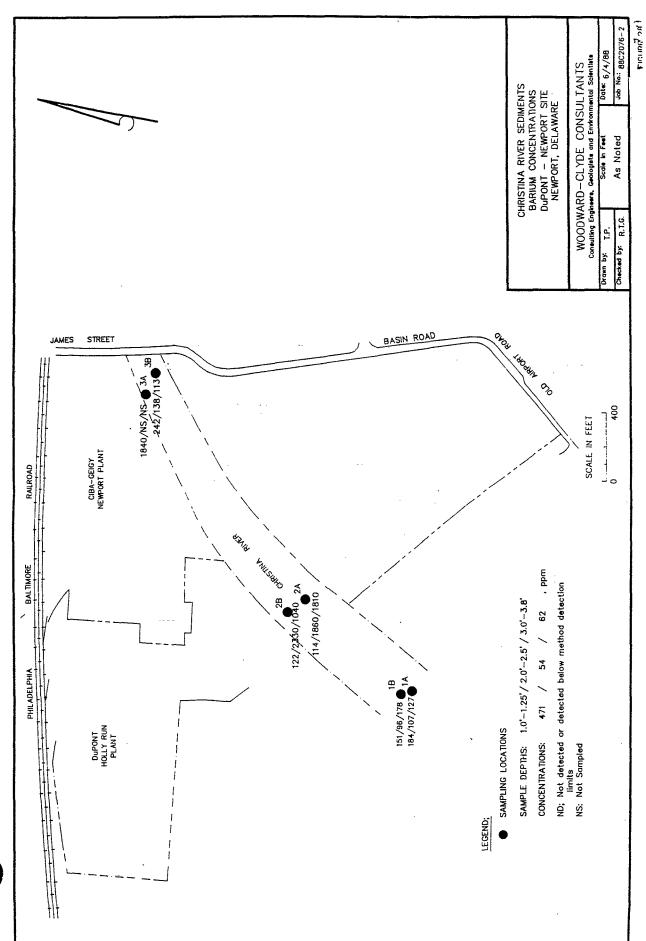



AR301702

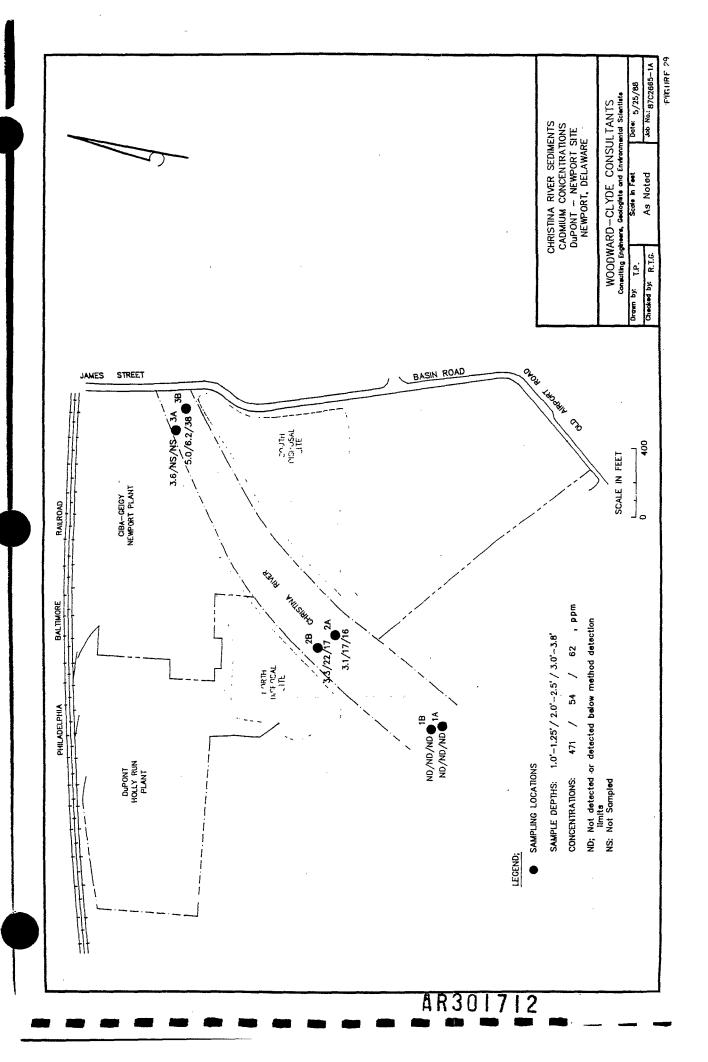


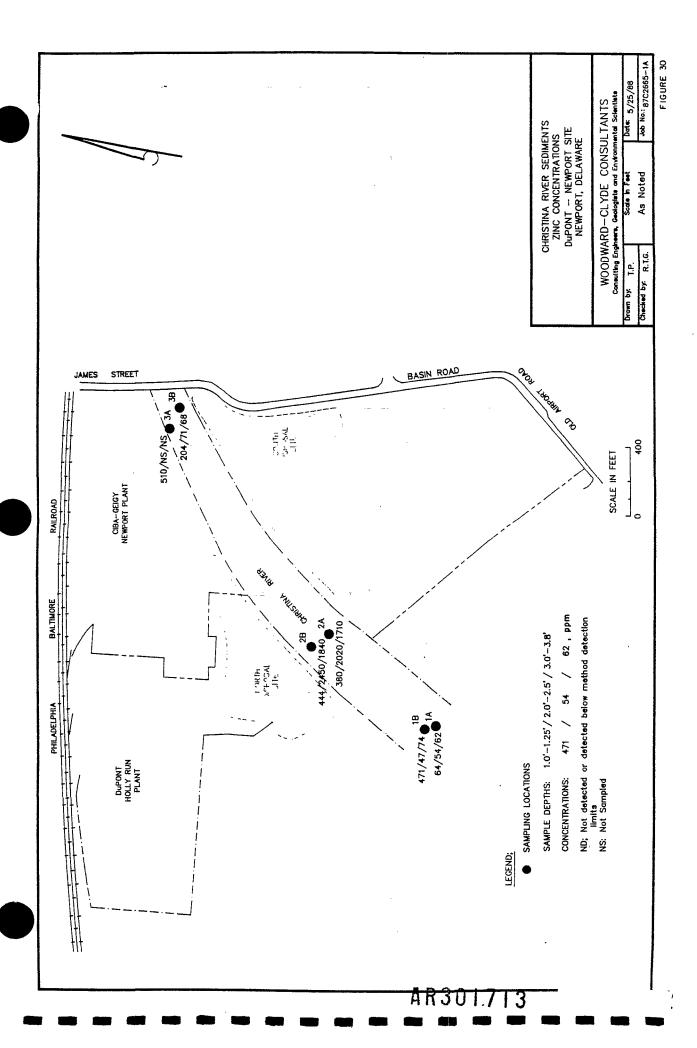


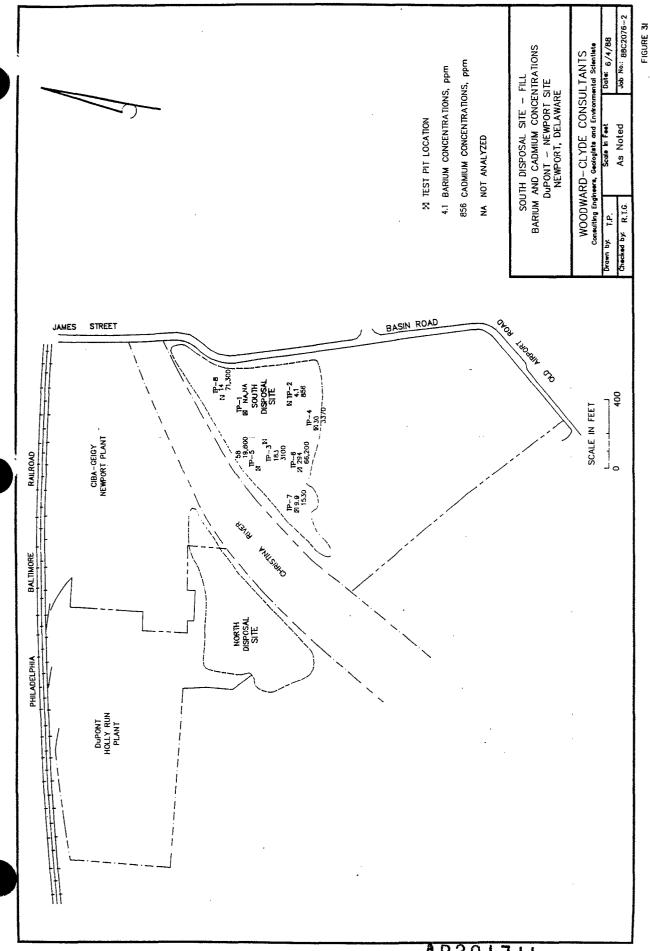

AR301706



, **Ş**


25





AR30 710

3

FIGURE 32

Appendix J-1

December 87 Dissolved

	WOO Ha	WOODWARD-CLYDE CONSULTANTS Hazardous Waste Database	LTANTS abase		
	Concen	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site 1,2-Dichlorobenzene	R tted Parameters Site inzene		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
SMI	ng/J				
SM3	ug/1 ug/1		17.3	15,82	
SM4 SM5	ug/1 ug/1				
DM4	ug/1		,		
	1/gn		•		
DML7	ng/1	٠			
DMUZ	ng/1				
WD11	ug/1				
MWIA	ng/1		67.4		
MW1B MW1C	1/gn				
MW2A	ug/1		67.0	65.95	
MW2B	ng/1			1	
MESA	ug/1 ug/1			22.5	
MW3B	ug/1				
MAG	ug/1				
MW4B	ng/1				
MW4C	ng/1				
MWSA	ug/1				
MWSC	ug/1				
MMGA	ug/1	,			
	1/5n			•	
MW7A	ug/1				
MW7B	1/gn				
MM7C	ug/1			Ç	
0 KE	I/Dn			7.7	
MW11	ug/1				
MW13	ug/1				
50014 ME15	ug/1				
NECASTRO-A	r/fm nd/J				
NECASTRO-B	ng/1				

	Conc€i	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site 1,2-Trans-dichloroethylene	R ted Parameters : Site		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87	December 87 Dissolved
	1/20				
2	1/00		1.9.1	σ	
SM3	ng/1		+ 0 · e	13	
SM4	ng/1			;	
SMS	ng/1		61.9	140	
DM4	ng/1				
	1/gn		٠		
DMI.7	1/6n				
	[/bn	•		Č	
1103	[/bn			7.7	
1100					
MAIA					
MATERIAL DE	1/00				
MAIC	ng/1		•		
MW2A	ng/1			16	
MW2B	1/6n				
MW2C	ng/1				
MW3A	ng/1				
MAN DE LA COMPANIE DE	I/Bn				
	1/bn				
M4B	נ/מו		ď	7. 7.8	
MM4C	nd/j) ; ;		
MWSA	ng/1				
MW5B	ng/1				
MWSC	ug/1				
MWGA	ug/1				
Men	I/Bn		•		
	I/gn				
A VA	T/gn				
C7745	1/8n				
MAIS	יים אולים ביים אולים		ď		
O ILW	1/61			0.1.	
MW11	r/m		,		
MW13	uq/1				
MW14	ng/1				
MW15	ug/1				
NECASTRO-A	ug/1				
NECASTRO-B	ng/1				

Concentrations of Detected Parameters Concentrations of Detected Parameters Light Concentrations of Detected Parameters Light Concentrations of Detected Parameters Light Concentrations of Detected Parameters Light Concentrations of Detected Parameters Light Concentrations of Detected Parameters Light Concentrations Light Con	101	Concen	GROUNDWATE itrations of Detections of Detections of Members items of the Company	ZR		
Magnet 87 December 87 De	200	Units	1,4-Dichlorope	cted rarameters t Site mzene		
ug/1 ug/1	M1 M3 M4 M6 M6 M6 M6		August 87 Dissolved	August 87 Total	Total	December Dissolved
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	M2 M4 M4 M4 M6 M6 M6	ug/1				
12.4 19.7	M4 M5 M6 M6 M6 M8	ug/1				
12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7	M5 M4 M6 M8 ML7	ug/1 ug/1				
12.4 12.7 12.4 12.7 12.4	M4 M6 M8 ML7	ug/1				
12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.7	M8 ML7	. ug/1				
12.4 12.7 12.7	ML7	ug/1				
ug/1 ug/1		ug/1				
ug/1 ug/1	MUT	ug/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	D11	ug/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	1011	ug/1			,	
ug/1 ug/1	717 718	ng/1		15.4		
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	WIG	ug/1				
	WZA	ug/1		11.7	12.0	
	WAIS WAIS	1/0n				
	WODY THE THE THE THE THE THE THE THE THE THE	ug/1				
	WOB	ug/1				
	3 200	ug/1				
	74.A	1/8n	•			
	W4C	ug/1				
	MSA	ug/1				
	WOB	1/gn				
		ug/1				
COR	W6B	ug/1				
	Wec	ug/1	•			
	W7A	ug/1				
	IW7B	T / Øn				
	IW 7 C	r/gn				
r Cons	694	uq/1				
· CGA-S	W11	ug/1				
	W13	ng/J				
	1941.4 #23.4	ug/1				
	OTAL	7/5n	(•

	Concer	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site	d Parameters iite		
Sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
	ng/1				
SM2 SM3	ug/1 ug/1				
AES O	ng/1				
DMC	10/1 10/1				
DMG	ug/1 ug/1		4.3900		
DML7	ug/1				
DM07	1/gn 1/5::				
WALL WW11	ug/1				
MWIA	ng/1				
MAIB	ug/1				
MAZA	ug/1		5.6200		
	ug/1				
MW2C	ug/1				
MM3B	ug/1				
MMSC	ng/1				
Mark	ng/1				
MAC	ug/1				
MASA	ng/1				
MESC	ug/1				
MWGA	ng/1				
MMGB	ug/1				
MAN A	1/5m				
MW7B	ug/1				
MW7C	ng/J				
	1/Bn				
ME11	7 / Bn				
MW13	ug/1				
MW14	ng/1				
MW15 MBC & CHICK	ug/1				
NECASTRO-B NECASTRO-B	1/5n				
	1				

	WOC	WOODWARD-CLYDE CONSULTANTS Hazardous Waste Database	NTS se			
	Concer	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site 4,4'-DDT	:ed Parameters Site	_		,
Sample Location Name	Units	August 87 Dissolved	August 87 Total		December 87 Total	December 87
SM1	ug/1					
S E E	ug/1					
TES.	ug/1					
DMC	ug/1					
DMG	ng/1		•			
DMB DMF.7	7 () () () () () ()					
DMU7	ug/1					
WD11	ug/1					
WW11 WG1A	ug/1					
WATER TO THE PERSON OF THE PER	ug/1					
	ug/1			9		
MESB	ug/1 ug/1		0.5400	9		
MAZC	1/0n					
MAGAB	ug/1					
MM3C	ng/1					
MAGA	ng/1					
MALE	ug/1 ug/1					
MWSA	ug/1					
MASS	ug/1					
MAGA	ug/1					
MWGB	ug/1					
MM6C	ng/J					
MW7A	ug/1					
MAZC	1/5n					
MWB	ug/1	•				
	ug/1					
MW1.1	ug/1					
MW14	ug/1					
MW15	ug/1					
NECASTRO-A NECASTRO-B	ug/ 1 ug/1					

	Concen	GROUNDWATER Concentrations of Detected Parameters	. Darameters		
		Dupont-Newport Site	ite		
Sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	
SM1	ug/1		4410.00		
SM2	ng/]		5010.00		
SM3	ng/1		439.000		
SMA	ng/1				
SMS	ug/1		29200.0		
DMC	uq/1		4740		
DMG	ug/1		532.000		
DMG	ug/1	37.0	66.0000		
DME7	ug/1		1130.00		
DMU7	ug/1	54.0	481		
WD11	ug/1				
WW11	ug/1				
MW1A	ug/1		58200.0		
MM1B	ug/1		57.0000		
MAIC	ug/1	32.0	194.000		
MW2A	ug/1		1680.00		
MW2B	ug/1		112.000		
MM2C	ng/J		68.0000		
MW3A	ng/1	22800	30100.0		
MM3B	ng/J	139	71.0000		
MANAC	ng/1	,	791.000		
MAA	ng/J	96.0	1500.00		
MME	ng/1	30.0	92.0000		
MAC	ug/1	37.0	517		
WC.ME	ug/1	105	6140.00		
	ng/1	102	190.000		
	ng/1	82.0	576.000		
AOME	T/Øn	111	3110		
	ng/1	()	289.000		
	r/fin	186	730		
W) ME	r/bn	169	13900.0		
	ng/1	95.0	121.000		
MM7C	ng/1	0.68	216.000		
AW6	ng/1		21100		
532	ng/1		3920		
XX 11	ng/1	72.0000	32700.0		
MW13	ug/1		11000.0		
	ng/1	53.0	10900.0		
MX15	ug/1	43.0000	27730		
NECASTRO-A	ug/1				
NECASTRO-B	ug/J				

December 87 Dissolved

Concentration Concentratio		MOW Ha	WOODWARD-CLYDE CONSULTANTS Hazardous Waste Database GROUNDWAIER	: abase R		
Multiple Maguet 67 December 67 Decem		Concer	itrations of Detec Dupont-Newport Arsenic			
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	Location	Units	August 87 Dissolved	4	ber	December 87 Dissolved
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	SM1	ug/1	Į.			
### 1	SMS	ng/1				
ug/1 ug/1	THE THE THE THE THE THE THE THE THE THE	ug/1 ug/1				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SMS	ug/1				
Ug/1 Ug/1	980	ug/ 1 ug/ 1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1)MB	ug/1		•		
ug/1 ug/1	ML7	ug/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		1/0n	•			
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	MII	ng/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	MIA	ng/1				
ug/1 ug/1	25.13 C.13	ug/1				
ug/1 ug/1 ug/1 ug/1 ug/1 22.0000 ug/1 22.0000 ug/1 4.60 ug/1 20 ug/1 4.60 ug/1 20 ug/1 11 ug/1 21 ug/1 27 ug/1 27 ug/1 35 ug/1 36 ug/1 34	W2A	ug/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	MZB	ng/1				
ug/1 ug/1	W2C	ug/1				
ug/1 ug/1	Mab	ng/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	Wac	ng/1			;	
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 stro-A ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	747 248	1/5n		22.0000	*	22
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	2.	ug/1				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	NO.	ng/J				
UG/1 UG/1	2002 2003	1/5n				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 stro-A ug/1 stro-A ug/1	WGA	ng/1				
ug/1 4.50 ug/1 ug/1 ug/1 ug/1 ug/1 sTRO-A ug/1 sTRO-B	WGB	ug/l				
STRO-A UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1	MOC E7A	ng/I	4.60		C	4
UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 STRO-A UG/1 UG/1 UG/1 UG/1 UG/1	M7B	ug/1			2	4
. ug/1 ug/1 27 27 ug/1 ug/1 35 2 2 27 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	W7C	ng/1	í			
TRO-A UG/1 UG/1 STRO-B UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1 UG/1	99 G	ug/1			11	0
STRO-A ug/1 stro-B ug/1	211	1/5n			21	9.
STRO-A ug/1 ug/1 ug/1 stro-B ug/1 ug/1	W13	nd/1				
STRO-A STRO-B	W14	1/gn			35	24
	WID	ug/1	(,
	ECASTRO-B	ug/1				

	Concei	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Barium	R ted Parameters Site		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
SM1	nd/1		106000		
SM2	ng/1	125	143.000	119	101
SM3	ug/1	250.000	2490.00	2420	729
SM4	ug/1	98.0000	149.000	303	72
SMS	ug/1	57.0	265.000	223	i on
DM4	ug/1	83.0000	158	, ;	}
DMG	ug/1	112	124.000	100	111
DM8	ug/1	78.0	62.0000	67	6 7
DML7	ng/1	83.0	240.000	96	78
DMU7	ng/1	183	530	2310	172
WD11	ng/1			67	
	I/Bn	•	1	56	30
MMIA	ng/1	123	316.000	87	₩
MW18	ng/1	61.0	76.0000	110	85
MMIC	ng/1	45.0	42:0000	9 9	•
MWZA	ng/J	48.0	66.0000	61	₹8
MAZB	ng/1	43.0	58.0000	66	6₹
MWZC MR32 B	T/Bn	£8.0	49.0000 624.0000	200	117
STORE OF THE STORE	1/5n	330	374.000	336	30 C
AND THE STREET	7 / Pa	0.71	33,0000	100	. o
MAZA	1 / Dis	85500	934.00	# 100 B	94700
ME 4.8	ng/1	265	328.000	404	106
MW4C	ug/1	287))) (20) (3) (4)	512	462
MWSA	ng/1	237	256.000	188	170
MW5B	ng/1	52.0	51.0000	242	32
MWSC	ng/1	0.08	50.0000	41	2.1
MW6A	ng/1	188	106	06	60
MMGB	ng/J	85.0	23.0000	55	35
MMCC	ng/1	29.0	79.0	169	110
MW7A	ng/1	18700	17900.0	9330	9420
	ng/1	60.0	37.0000	185	101
•	1/gn	0.86	66.0000	124	ල :
OME	T/On	26. 190	413	141	
	7/5n	134	1340	3080	122
TANK T	I/Bn	190.000	276.000	140	L9
MAT 3	I/bn	1120	1110.00	1400	1510
4 to M	1/6n	42400	59200.0	72800	00000
ME CONTROL OF THE CON	ng/1	310000	296	177000	150000
NECASTRO-B	1/0n [/bii			7 F	
	i i				
				7,	
		·		•	
					•

	Ž.	Hazardous Waste Database	Dage		
	Concer	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Beryllium	d Parameters ite		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
SM1	ug/1 ug/1				
255 255	ug/1		1.2000	2.1	
DEC.	7/5n		1.20	7 - 7	
DMB	ng/1		,		
DML7 DMU7	ug/1 ug/1				
WD11	ug/1				
MWII	ug/1 ug/1		1.8000	1.1	
MATB	ng/1				
MWIC	ug/1 ug/1				
MW2B	ug/1				
MWSA	1/5n	2.00	2.6000	2.0	
MANAB	ug/1				
MAN CO CO CO CO CO CO CO CO CO CO CO CO CO	1/5n				
MW4B	ng/1				
MANAGO MA	ng/l	. 40	0000		
MASB	ug/1	2.70			
MASC	ug/1	1.30	1.2000		
MWGB	ug/1 ug/1	1.50	•		
MWGC	ng/1	2.10			
MW7A	1/gn	0	7		
MEZ C	T/65		1.2000		
PM8	ug/1	2	1.40		
6MM	ng/J			1.1	
MW11	1/gn	1.3000	3.5000		
MATA	1/5n	7.80	7.0000		
MW15	ng/1		1.90		
NECASTRO-A	ug/1				.5.
NECASTRO-B	ug/1				

WOODWARD-CLYDE CONSULTANTS

8.1 12 7.0

29 **4**6

WOODWARD-CLYDE CONSULTANTS Hazardous Waste Database

GROUNDWATER
Concentrations of Detected Parameters
Dupont-Newport Site
Cadmium

Sample Location

December 87 Dissolved

6.9 120

501

9.9

Units August 87 August 87 August 87 December 87 ug/1 592.000 640.000 525 ug/1 511.000 16.000 10 ug/1 110.00 126.000 116 ug/1 11400 4.60 115 ug/1 11400 4.60 115 ug/1 11400 4.60 115 ug/1 11400 4.60 115 ug/1 16.0 81.000 5.4 ug/1 16.0 81.000 53 ug/1 16.0 81.000 53 ug/1 16.0 4.500 35 ug/1 18.0 24.000 53 ug/1 10.0 10.000 11 ug/1 16.0 27.00 6.1 ug/1 16.0 27.0 41 ug/1 16.0 10.000 11 ug/1 16.0 10.000 11 ug/1 16.0 <t< th=""><th>## August 87 ## August 87 ## Dissolved ## Di</th><th></th><th></th><th></th><th></th></t<>	## August 87 ## August 87 ## Dissolved ## Di				
7.0000 6.90 6.90 13.0 13.0 13.0 14.00 109 11400 4.60 4.60 12.0000 6.20 6.7000 6.7000 6.20 4.40 18.0 18.0 16.0 10.0 10.0 15.0000 15.0000 6.50 15.0000 6.50 15.0000	7.0000 592.000 6.90 511.000 511.000 13.0 11400 11400 11400 11400 4.60 16.000 16.0 18.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	Units	August 87 Dissolved	August 87 Total	December 87 Total
592.000 6.90 15.000 16.0000 11400 11400 11400 96.0 274 16.00 16.0000 16.000 18.0 18.0 10.0 10.0 10.0 15.0000 16.00000 16.00000 16.00000 16.00000 16.000000 16.0000000	592.000 6.90 15.000 16.000 11400 11400 11400 115.0000 115.0000 115.0000 115.0000 115.0000 116.0 116.0 117.0000 117.0000 118.0 119.0000	ng/1		7.0000	
592.000 640.000 16.0000 113.0 114.00 114.00 115.0000 126.000 126.0000 127.0000 127.0000 128.0 12.0000 13.0000 14.00 15.0000 15.0000 15.0000 15.0000	592.000 640.000 16.0000 113.0 114.00 114.00 115.0000 126.000 127.0000	ug/1			
6.90 511.000 13.0 11400 11400 4.60 4.60 50.0000 50.0000 6.20 6.20 6.7000 6.20 6.7000 6.7000 6.7000 16.00 10.00 10.00 10.00 6.50 10.000 1	6.90 511.000 113.0 113.0 114.00 115.000 115.000 126.000 126.000 127.0000 6.20 6.20 6.7000 6.7000 6.7000 10.0 10.0 10.0 115.0000 115.0000 115.0000 115.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000 125.0000	ug/1	592,000	640.000	525
511.000 13.0 11400 11400 115.000 126.000 12.0000 274 16.0 18.0 270 18.0 270 10.0 10.0 110.	511.000 544 13.0 16.000 109 126.000 11400 4.60 6.20 81.0000 50.0000 6.20 4.5000 4.40 18.0 24.0000 12.0000 10.0 10.0 11.0000 16.0 11.0000 16.0 11.0000 16.0 11.0000 16.0 11.0000 16.0 11.0000 16.0 11.0000 17.0000 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	ug/1	6.90	16.0000	10
13.0 16.000 109 126.000 12.0000 274 268.000 6.20 4.40 18.0 24.0000 6.20 4.40 18.0 24.0000 10.0 10.0 119.000 10.0 119.0000 6.50 115.0000 19.0000 6.50 115.0000	13.0 16.000 109 126.000 12.0000 274 268.000 16.0 6.20 4.40 18.0 24.0000 10.0 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000	ug/1	511.000	544	
109 11400 4.60 50.0000 50.0000 50.0000 16.0 6.20 81.0000 4.5000 4.40 18.0 24.0000 5.7000 8.90 10.0 10.0 10.000 17 10.0 16.0 18.0 16.0 27.0 16.0 18.0 17 10.000 19.0000 19.0000 19.0000	109 11400 4.60 12.0000 50.0000 50.0000 16.00 6.20 6.7000 6.20 4.5000 4.60 16.00 18.0 18.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.000 10.	ug/1	13.0	16.0000	14
11400 4.60 50.0000 274 16.0 6.20 6.7000 4.40 18.0 6.7000 4.40 4.40 18.0 24.0000 5.7000 8.90 10.0 10.0 10.000 11.0000 12.0000 13.0000 14.0 16.000 17.0000 18.90 19.0000 19.000 19.0000	11400 4.60 12.0000 50.0000 274 16.00 6.20 6.7000 6.20 4.5000 6.7000 6.7000 6.7000 6.7000 18.0 18.0 19.0000 19.0000 19.0000 6.50 19.0000 19.0000 19.0000	ug/1	109	126.000	116
4.60 96.0	4.60 96.0	ug/1	11400		
12.0000 274 16.0 16.0 6.20 4.5000 4.5000 18.0 18.0 24.0000 5.7000 10.0 10.0 16.0 16.0 16.0 19.0000 19.0000 6.50 15.0000	12.0000 274 50.0000 274 16.0 16.00 6.20 4.5000 4.5000 4.5000 18.0 24.0000 5.7000 10.0 10.0 16.0 16.0 16.0 19.0000 19.0000 6.50 15.0000 26.0000	ng/1		€.60	15
12.0000 274 16.0 16.00 6.20 4.5000 4.5000 18.0 18.0 24.0000 5.7000 10.0 10.0 16.0 16.0 16.0 19.0000 19.0000 6.50 15.0000	12.0000 274 50.0000 274 16.0 16.000 6.20 4.5000 4.5000 4.5000 18.0 24.0000 5.7000 10.0 10.0 10.0 15.0000 19.0000 15.0000 15.0000 15.0000 15.0000	ug/1			12
96.0 274 16.0 16.00 6.20 4.5000 6.20 4.40 18.0 18.0 24.000 5.700 8.90 17.000 16.0 16.0 16.0 17.000 18.0 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000	96.0 274 16.0 16.00 6.20 4.5000 4.5000 18.0 18.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.00 10.000 10.	ng/1			12
96.0 274 16.0 16.00 6.20 4.5000 4.40 18.0 18.0 24.000 5.700 8.90 17.000 16.0 16.0 16.0 16.0 19.000 6.50 19.000	96.0 274 16.0 16.000 6.20 4.5000 4.40 18.0 18.0 12.0000 17.0000 16.0 16.0 16.0 16.0 19.0000 19.	ug/1		12.0000	5.4
96.0 81.0000 274 16.000 16.0 16.000 18.0 4.5000 4.5000 4.5000 18.0 24.0000 5.7000 17.0000 16.0 12.0000 17.0000 16.0 18.0 19.0000 6.50 15.0000 26.0	96.0 81.0000 274 16.000 16.0 16.000 18.0 4.40 18.0 24.000 5.7000 19.0000 10.0 10.0 10.0000 16.0 27.0 16.0 27.0 16.0 19.0000 19.0000 26.50 26.0	r/gn			
96.0 81.0000 274 16.000 16.0 16.000 6.20 4.5000 4.40 18.0 24.0000 5.7000 10.0 12.0000 17.0000 16.0 18.0 16.0 18.0 19.0000 6.50 15.0000 26.0	96.0 81.0000 274 16.000 16.0 16.000 6.20 4.5000 4.40 18.0 24.0000 5.7000 10.0 12.0000 17 10.0 16.0 27.0 16.0 27.0 16.0 18.0 19.0000 6.50 15.0000	ug/1		0000 . 06	
274 268.000 16.0 16.000 6.20 4.5000 4.5000 18.0 24.0000 5.7000 12.0000 17.0000 16.0 12.0000 16.0 16.0 19.0000 6.50 15.0000	274 268.000 16.0 16.000 6.20 4.5000 4.5000 4.40 18.0 24.0000 5.7000 112.0000 117 10.0 127.0 16.0 27.0 16.0 18.0 19.0000 6.50 15.0000	ug/1	0.96	81.0000	7.1
16.0 16.000 6.20 4.5000 4.5000 18.0 24.0000 5.7000 12.0000 17 17 10.0 16.0 18.0 19.0000 6.50 15.0000	16.0 16.000 6.20 4.5000 4.5000 18.0 24.0000 5.7000 112.0000 117 10.0 10.0000 16.0 27.0 16.0 18.0 19.0000 6.50 15.0000	ug/1	274	268.000	53
6.20 4.5000 4.40 18.0 24.0000 5.7000 12.0000 17 10.0 16.0 16.0 16.0 16.0 16.0 19.0000 19.0000 19.0000	6.20 4.5000 4.40 18.0 24.0000 5.7000 8.90 12.0000 17 10.0 10.0000 16.0 27.0 16.0 18.0 19.0000 6.50 15.0000	ug/1	16.0	16.0000	36
6.20	6.20	ng/1			
6.20	6.20	ng/1		1	4. 6
6.20 4.5000 4.40 24.0000 5.7000 12.0000 17 10.0 16.0 16.0 16.0 16.0 19.0000 6.50 15.0000 26.0	6.20 4.5000 4.40 24.0000 5.7000 12.0000 17 10.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 19.0000 19.0000 19.0000	ng/1		6.7000	1.7
18.0 24.0000 35 5.7000 6 8.90 12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 16.50 250 25000 12	18.0 24.0000 35 5.7000 6 8.90 12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 16.50 27.0 63 15.0000 12 6.50 26.0 16	1/gn	6.20	4.5000	13
8.90 12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	8.90 12.0000 17 10.0 10.0000 11.0000 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	1/5n	0	34.5000	36
8 90 12 0000 17 10 0 10 0000 16 0 27 0 41 16 0 18 0 63 19 0000 12 6 50 15 0000 29	8 90 12 0000 17 10 0 10 0000 16 0 27 0 41 16 0 18 0 63 19 0000 12 6 50 15 0000 29	7 () () ()	0.01	0000: 4	-
8.90 12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	8.90 12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	1/6n			•
12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	12.0000 17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	nd/1		06.8	
17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	17 10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	ng/1		12.0000	
10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	10.0 10.0000 11 16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	ug/1		17	
16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	ng/1	10.0	10.0000	11
16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29	16.0 27.0 41 16.0 18.0 63 19.0000 12 6.50 15.0000 29 26.0 16	ng/1			
16.0 16.0 19.0000 6.50 15.0000 26.0	16.0 16.0 19.0000 6.50 15.0000 26.0	ng/J			5.6
16.0 18.0 19.0000 6.50 15.0000 26.0	16.0 18.0 19.0000 6.50 15.0000 26.0	ng/1	16.0	27.0	41
19.0000 6.50 15.0000 26.0	19.0000 6.50 15.0000 26.0	ng/J	16.0	18.0	63
6.50 15.0000 26.0	6.50 15.0000 26.0	ng/J		19.0000	12
6.50 15.0000 26.0	6.50 15.0000 26.0	ug/1			12
26.0	26.0	ug/1	6.50	15.0000	29
ug/1	ug/1 ug/1	ng/1		26.0	16
	ug/1	ug/1			

72

13 13 56

DML7
DMU7
WW11
WW111
WW111
WW114
WW12B
WW12B
WW12B
WW12B
WW12B
WW13A
WW13A
WW13B
WW13B
WW16C
WW16C
WW16C
WW16C
WW16C
WW16C
WW16C
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111
WW111

	Concen	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Calcium	ted Parameters Site		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
₩	וומין		45200 0		
· ·	ng/1	9710	03.03.0		
SMS	ug/1	18200.0	19000.0		
SM4	ug/1	128000	113000		
SMS	ug/1	19400	21800.0		
DM4	ug/1	162000	169		
DW6	ng/1	34400	36800.0		
DM8	ng/3	14000	15900.0		-
DML7	ng/ I	\$ \$ \$	9910.00		
DMQ	ug/1	5720	6440		
WD11	ng/1				
T T MAN T	r/Øn				
MWIA	ng/1	19000	17200.0		
MAIB	ng/1	8970	9960.00		
MATC	1/gn		5340.00		
A SAME	10n	15000	15900.0		
MASC MASC		24400	25000.0		
MMSA	ng/]	14200	13500.0		
MW3B	ug/1	1670			
MW3C	ng/1	3500	4320.00		
MW4A	ug/1	18800	23900.0		
MW4B	ug/1	51200.0	48200.0		
MW4C	ng/1	9550	9280		
MWSA	ng/1	231	20600.0		
MASB	ng/1	7800	7920.00		
JOAN TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOT	1/gn	040	8160.00		
MAGER	7/20	4290	3360 00		
	ng/1	6400	7040		
MM7A	ug/1	139	98200.0		
MW7B	ug/1	0777	4280.00		
MM7C	ng/1	12500	9880.00		
MWB	ug/1	118000	127		
MM9	ug/1	594	50500		
MW11	ng/J	32700.0	27200.0		
MW13	ug/1	35000	30500.0		
MW14	ng/1	48300	51000.0		
MW15	ug/1	6060.00	12000		
NECASTRU-A	ng/1				
NECASTRO-E	r/fin				

GROUNDWATER	
-------------	--

	Concen	Concentrations of Detected Parameters Dupont-Newport Site Carbon disulfide	ed Parameters Site		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
			5		
SM1	uq/1				
SM2	ng/1		5.7		
SM3	uq/1				
W. Co	uq/1				
	1/201				
200	1 /2:				
PEG				9	
	7 /05		•	91	
o E C	T/Dn				
	T/Bn				
	7 / Dn	•			•
WD11	ng/1				
	ng/1				•
MAIA	ng/l				
MMIB	ng/1				
MW1C	ug/1				
MW2A	ng/J				
MW2B	ng/l				
MW2C	ng/1				
MW3A	ng/1				
MANAB	ng/1				
MAGO	ng/1				
MW4A	ng/J				
MM4B	T/Bn				
MM4C	ng/J				
VCMW	I/Bn				
E CARD	ug/1				
	1/5n			,	
MANA	1/5n			97	
COMM					
MM7A	1 / Dr.				
MM7B	1/0n				
MW7C	ug/1				
MW8	ng/1				
MM9	ug/1				
MW11	ug/1				
MW13	ug/1				
MW14	ug/1		7.6		
MW15	ug/1				
NECASTRO-A	ng/1				
NECASTRO-B	ng/l				4.0

14,012

Sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
CRU	(/ to				
E S	ug/1				
SM4	ug/1		34.9	23	
SMS	ng/J				
DM4	ug/1				
DWG	ng/J				
DM8	ug/1				
DML7	T/Sn				
WD11	100/1 10/1				
MW11	ug/1				
MWIA	ug/1				
MAIB	ug/1				
MWIC	ug/1		•		
MW2A	ng/1				
	ug/1				
MAISC .	ng/]				
MASA	ng/1				
MANAGE	ng/J				
	ng/J				
MATERIAL DESCRIPTION OF THE PROPERTY OF THE PR	T / Din				
	1/5n				
MESA	1/25				
MASB	ug/1				
MWSC	ug/1				
MWGA	ug/1				
MW6B	ug/1				
MM6C	ug/1				
MW7A	ug/1		•		
MA7B	ug/1				
AW/C	ng/1				
	1/gn				
1500 J	700				
MW13	10/1 10/1	•			
MW14	ug/1				
A215	ug/J				
NECASTRO-A NPCASTRO-B	ug/1				
	۲ ۱				

GROUNDWATER
Concentrations of Detected Parameters
Dupont-Newport Site
Chlorobenzene

CONSULTANTS	ite Database
CLYDE	Wa.
WOODWARD-(Hazardona

Sample Location

December 87 Dissolved

16

August 87 December Total Total	12.0000	17.0000		43.0000 120		79.0	11,0000	6.9000	8	4.10	u	0000 40	63.0000		0000	0007.6		72 0000 25	2210.00	0006.6	22.0000	7.7000		16.0000		12.0000 5.7		4.2000		38.0000		7.3000	29		75.0000 34		000
August 87 Dissolved		34.0		10.0000		3.0000		8.10		8.50				*				0 66	2.00					7.10	4.80	8.40	24.0		9.50	7.70	3.90		27.0		9.3000	9.3000	9.3000 5.90 23.0
Units	[//	ug/1	ug/1	ug/1	ug/1	ug/1	ng/1	ug/1	ug/1	ug/]	1/gn	7/00	1/Bn	7 (7)	1 /Bn	7 / Da	1/ 5 :	1 / bi	ng/1	ug/1	ug/1	ug/1	ng/1	ng/1	ng/1	ng/J	ug/1	ng/1	ng/1	ug/1	ng/1	ug/1	ug/1	1/2/1	ug/1	ug/1 ug/1	ug/1 ug/1 ug/1

SM1
SM2
SM3
SM4
SM4
SM4
SM6
DM6
DM6
DM6
DM6
DM11
WM11
WM11
WM13
WM2B
WM3A
WM2B
WM3A
WM3A
WM3B
WM3A
WM3C
WM4A
WM3C
WM4A
WM6B
WM6C
WM4A
WM6B
WM6C
WM4A
WM6B
WM6C
WM4A
WM6B
WM6C
WM4A
WM6B
WM6C
WM11
WM11
WM11
WM11
WM11
WM11

Sample Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
SM1 SM2	ug/1	0.40	0000 86		
2	T/25	45.0000	7.0000		
720	1/00	1500.00	1540.00		
	1/bn	11.0	27.0000		
DMA	nd/1	984.000	1010		
DMG	1/5n	87.0	92.0000		
DMB	1/6n	42.0	49.0000		
DML7	ug/1	•			
DMU7	ng/1	4.90	3.90		
WD11	l/gu				
MATT	1/6n	6			
MALA Maria	1/5n	9.20	28.0000		
	T/Bn	6.20	4.5000		
MESA			0000.64		
MWZB	I/Dn	86.0	76.000		
MW2C	ug/1	77.0	74.0000		
MW3A	ng/1	95.0	103.000		
MM3B	ng/1	5.40	26.0000		
MESOC	ī/bn	2.30	7.8000		
MACA	1/5n	(
G F F F F F F F F F F F F F F F F F F F		0.6	16.000		
MMSA	nd/1	18.0	21.0000		
MW5B	ug/1				
MINSC	I/Bn				
MMGA	r/on		4.50		
MOSS	I/Bn		•		
META	1 / D:		1000		
MWZB	t/an		207:0		
MW7C	ug/1				
MW8	ng/1	909	636.0		
6MM	r/6n	16.0	14.0		
MMII	nd/j	-	46.0000		
MMIS	ug/1	16.0	16.0000		
3V14 M23 5	1/5n		•		
MECASTROLA	1/5n				
MECASTRO-A					

CONSULTANTS	: Database
CLYDE C	Waste
MOODWARD-CL	Hazardous

GROUNDWATER	oncentrations of Detected Parameters	Dupont-Newport Site	reacon.
dia Grand	Concentrations	Dupont	

		Copper			
Location	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
1	***************************************				
	uq/1		22.0000		
	ug/1	06.4	7.9000	3.0	
	ng/1				
	ug/1	12.0000	39.0000	146	24
	ng/1		29.0000	16	
	ng/1	4.4000	7.60		
	ng/1		4.,2000	3.2	16
	ng/1	6.30	12.0000		2.7
	l/bn		7.4000		
	ng/J	4.70	4.00	54	
	ng/1			124	
	ng/1			121	
	uq/1	13.0	23.0000		6.9
	uq/1	09.8	9.4000	11	15
	ug/1		11.0000		23
	uq/1		5.6000	1	
	uq/1	29.0	39.000	29	13
	ug/1	0.00	51.0000	17	13
	ug/1	14.0	16,0000	27	7.1
	1/bn	4.30	4.3000	7.7	3.7
•	1/bn		0006.9	16	6.9
	1/5h			8.3	
	ng/1		0006.₽	9.7	
	ng/1		12.0	4.4	07
	1/bn	4.70	19.0000	*. *	14
	ng/1	14.0	0006.₽		
	ng/1	36.0	12.0000		
	ng/1	27.0	7.20		
	ng/1	35.0	6.8000		
	ug/1	24.0	14.0	5.9	
	ng/1	7.50	24.0000	1.7	
	ug/1	8.60	5.6000		
	ng/1	7.20	8.8000	16	
	ug/1		12.0	18	
	ng/1		24.0	94	9.6
	ng/1	35.0000	50.0000	22	
	ng/1	28.0	18.0000	14	
	r/bn		44.0000	7.4	
	ug/1	1	326	22	
₩-0	r/bn			932	

Sample Location Units August 87 August 87 December 87 881 882 7043 7043 982 882 8073 7043 984 8073 8073 7043 984 8073 8073 7043 1946 8073 8073 8073 1940 8073 8073 8073 1941 8073 8073 8073 1942 8073 8073 8073 1943 8073 8073 8073 1944 8073 8073 8073 1945 8073 8073 8073 1945 8073 8073 8073 1944 8073 8073 8073 1945 8073 8073 8073 1945 8073 8073 8073 1946 8073 8073 8073 1947 8073 8073 8073 1947 8073 8073 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
# 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1 # 9/1		Units	August 87 Dissolved	¥	ber	December 87 Dissolved
### ### ### ### ### ### #### #### ######						
#9/1 #9/1 #9/1 #9/1 #9/1 #9/1 #9/1 #9/1	SM1	mg/1				
### ### ### ### ### ### ### ### #### ####	SM2	II/DII				
### ### ### ### ### ### ### ### #### ####		mg/1				
### ### ### ### ### ### ### ### #### ####	SMC SMC	I / Dill				
# # # # # # # # # # # # # # # # # # #	030 030	T / 5 I				
### ### ### ### ### ### ### ### ### ##		1 (7) to				
# # # # # # # # # # # # # # # # # # #	DMB	1 / D				
### ### ### ### ### ### ### #### #### ####	DML7			0.030		
### ### ### ### ### ### ### ### #### ####	DMU7	MQ/1				
### ### ### ### #### #### ############	WD11	MQ/1				
### ### ### ### ### ### ### ### ### ##	WW11					
### ### ### ### ### ### ### ### #### ####	MW1A	[/b#		060 0		
### ### ### ### ### ### ### ### ### ##	MM1B					
### ### ### ### ### ### ### ### ### ##	MAIC					
### ### ### ### ### ### ### ### ### ##	MW2A	[/bs				
### ### ### ### ### ### ### ### #### ####	MW2B					
### ### ### ### ### ### ### ### #### ####	MW2C	1/04				
### ### ### #### #####################	MW3A	1/01				
### ### ### ### ### ### ### ### #### ####	MW3B	196/1				
### ### ### ### ### #### #### ########	MM3C	mg/1				
### ### ### ### ### #### #### ########	MW4A	Mg/1		0.030		
### ### ### ### ### #### #### ########	MW4B	ng/1				
### ### ### ### ### #### #### ########	MW4C	mg/1		0.030		
### ### ### ### ### ### ### ### #### ####	MWSA	mg/1		0.020		
### ### ### ### ### #### #### ########	MMSB	mg/1	,			
### ### ### ##########################	MMDC	III J		0.020		
mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	MMCA	EQ/1		0.020		
### ### ### ### ### #### #### ########	MMGB	I/Bm		0.030		
mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	MW6C	mg/1		0.030		
mg/1 mg/1 mg/1 mg/1 mg/1 STRO-A mg/1	MW7A	mg/1		0.020		
mg/1 mg/1 mg/1 mg/1 mg/1 STRO-A mg/1	MM7B	mg/1		0.030		
#g/1 #g/1 #g/1 #g/1 \$TRO-A #g/1	MW7C	I/Sm		0.030		
mg/1 mg/1 mg/1 mg/1 STRO-A mg/1	SAME.	ng/1		0.040		
mg/1 mg/1 mg/1 mg/1 STRO-A mg/1	SEE	I/Sw				
mg/1 mg/1 mg/1 STRO-A mg/1	MW1 1	mg/1		0.030		
mg/1 mg/1 stro-A mg/1	MW13	mg/1		0.030		
mg/l STRO-A mg/l	MW14	mg/1				
	G I MW	mg/1		0.020		
	NECASTRO-A	mg/l	•			
	NECASTRO-B	mg/l	•			

LTANTS	abase
LYDE CONSU	Waste Data
WOODWARD-CI	Hazardous

December 87 Dissolved

ug/1 ug/1 ug/1 ug/1 ug/1
ug/l
1/501

		:			
Sample Location	Units	August 87 Dissolved	August 87	December 87	December 87
				3	no to contra
SM1	ug/1		4680.00		
SM2	ug/1	10900	22200.0		
SM3	ug/1	1420.00	7940.00		
SM4	ug/1		14200.0		
SM5	ng/1	390	33800.0		
DM4	ng/1		29600		
DMG	ng/J	3730	5830.00		
DM8	ng/1	145	507.000		
DML7	ug/1	2480	5740.00		
DMU7	ng/1	20000	24400		
WD11	ug/1				
WW11	ug/1				
MW1A	ug/1		44600.0	,	
MW1B	ug/1		116.000		
MW1C	ug/1	1030	1600.00		
MW2A	ug/1		2290.00		
MW2B	ug/1	•	387.000		
MW2C	ug/1		0000.06		
MW3A	ug/1	76500	87200.0		
MW3B	ug/1	596	338.000		
MM3C	ng/1	1590	4830.00		
MW4A	ng/1	24900	39000.0		
MW4B	ug/1	23.0	225.000		
MM4C	ug/1	4780	6220		
MW5A	ug/1	17300	177000		
MW5B	ng/J	13400	13900.0		
MWSC	ng/J	1350	4920.00		
MW6A	ng/1		6290		
MWGB	ng/J	8970	7660.00		
MMCC	ug/1	42.0	3390		
MW7A	ug/1	42500	52200.0		
MW7B	ug/1	7220	6710.00		
MW7C	ng/J	4070	5430.00		
WW8	ug/1	97200	153		
WW9	. ug/1	00986	98100		
MW11	ng/1		178000		
MW13	ug/1	21300	31300.0		
MW14	ng/J	34600	52300.0		
MM15	ug/1	41.0000	66200		
NECASTRO-A	ng/J				
NECASTRO-B	ng/1				

GROUNDWATER
Concentrations of Detected Parameters
Dupont-Newport Site
Iron

	Concen	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Lead	Parameters te		
Sample Location	Units	August 87 Dissolved	August 87 Total	December 87	December 87
70	1,2,1		124 000		
SMS	ug/1		200		
SM3	ug/1			2.4	
SM4	ng/]		48.0000	260	2.5
SMS	ug/1		64.0000	*	9.0
134 144	7/5n	000	0.71	•	
. OEG	1/5n) . n		5	
DAL 7	nd/}		0000 . 99	2. 8	
DMCZ	ng/1		52.0	300	
WD11	ug/1			22	
WW11	ng/1			24	
MWIA	ng/3	!	60.0000	,	
MAIB	ug/1	23.0		♥ (u
MAN I C	ug/1	000		13	2.0
EM CA Made	7 / Din	079	·	66	
25 S	ug/1			00	20
MWJA	ug/1			11	
MASB	ug/1			35	2.0
MM3C	r/dn			80 °	3.6
MX.4.B	1/8h		36.0000	6.0	6.2
MW4C	ug/1			26	1
MWSA	ug/1				58
MW5B	ug/1			04	
	ug/1				
MWGB	ug/1			18	
MW6C	ng/1		28	8.0	
MW7A	ug/1		50.0000	12	
CANAL CO.	1/8m			13.0	
MWB	ug/1		27.0		
MM9	ug/1		110.0	420	
HW11	ug/1		28.0000		
EWIG MC14	1/gn		330 000	700	
MW15	ug/1		324	56	
NECASTRO-A	ug/1			24	0
NECASTRO-B	ug/1			160	
					.,

MOODWARD-CLYDE CONSULTANTS Hazardous Waste Database

	Conco	GROUNDWATER Concentrations of Detected Parameters	SR sted Parameters		
		Dupont-Newport Magnesium	Site		
Sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
- 770			000000000000000000000000000000000000000		Application of the second of t
LEO CATO	7/50	6530	7160.00		
# CE	1/80	8740.00	8370.00		
TWO	ug/1	244000	214000		
SW2	ug/1	20300	25600.0		
DM4	uq/1	70000.0	71500		
DM6	ug/1	17800	18000.0		
DM8	ug/1	6490	7240.00		
DML.7	ug/1	3940	3760.00		
DMU7	ug/1	. 2360	2520		
WD11	ug/1				
WW1.1	ng/1				
MW1A	ng/1	25000	29700.0		
MW1B	ng/1	3140	3200.00		
MM1C	ug/1	1870	1900.00	,	
MW2A	ug/1	22100	21400.0		
MW2B	ug/1	4710	4330.00		
MW2C	ng/J	4720	4600.00		
MW3A	ng/]	17900	18400.0		
MW3B	ng/]	669	771.000		
MW3C	ng/J	1370	1610.00		
MW4A	ng/1	3680	5330.00		
	ng/1	18500	17900.0		
MW#C	r/Bn	3030	2960		
ACWE.	T/Bn	20500	19300.0		
MARK	1/8n	2110	1990.00		
MWGA	ומין ד	00202	17400		
MWGB	ng/1	1140	883.000		
MW6C	ug/1	1160	1290		
MW7A	ug/1	24900	22400.0		
MW7B	ug/1	1350	1090.00		
MW7C	ug/1	2110	1650.00		
MWB	ng/1	75600	84900		
- MM3	ug/1	29800	27700		
MW11	ng/J	25900.0	28100.0		
MW13	ug/1	18900	17500.0		
MW14	ug/1	19200	22200.0		
MW15	ng/1	230.000	3890		
NECASTRO-A	ng/1				
NECASTRO-B	ng/1				

ONSULTANTS	. Database
CYDE C	Waste
WOODWARD-CI	Hazardous

GROUNDWATER	Concentrations of Detected Parameters	Dupont-Newport Site	Manganese
-------------	---------------------------------------	---------------------	-----------

Sample Location

December 87 Dissolved

December 87 Total

August 87 Total	634.000	547.000	27700.0	526.000	16300	1020.00	762.000	53.0000	170		1250.00	20.0000	78.0000	774.000	1540.00	2470.00	5070.00	11.0000	36.0000	4720.00	110.000	0.18	52.000	36.0000	1880	34.0000	31.0	3590.00	•	59.0000	24800	13200	4870.00	3750.00	3500.00	8060	
August 87 Dissolved		496		•	16100.0	1010	694	49.0	159		737	18.0		785	1740	2560		•	0.68	3790		0.060	53.0	32.0	1840	42.0	7.30		•	0.09	23400		2010.00	4260	3370	3.0000	
Units	ng/1	1/5n		1/5n		. ug/1	ug/1	ug/1	ng/J	ng/l		uq/1	ug/1	ug/1	ng/J	r/Bn	I/Bn	ng/1	I/gn	ug/1	1/gn	1/30		1/5n	ng/1	ug/1	ug/1	ng/l	ng/1	ī/bn	ng/1	ug/1	1/gn	ug/1	ng/1	ug/1	7 / Dn

MW5A MW5B MW5B MW6A MW6C MW7A MW7A MW7B MW9 MW9 MW11 MW11 MW11 MW113 MW114 MW113 MW114

	Concen	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Methylene chloride	d Parameters ite ide		
Sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
SM1 SM2 SM2	ug/1 ug/1				
SMS	ug/1 ug/1		139		
DM6	ug/1 ug/1				
Page 7	ug/1 ug/1				
UMU? WD11	ug/1 ug/1				
WW11 MW1A	ug/1 ug/1				
MATE	ug/1				
MYZA	1/5n		128		
MW2B MW2C	ug/1 ug/1				
MW3B MW3B	ug/1				
MW3C	ug/1				
MAR B	1/6n				
MWSA	ug/ 1 ug/ 1				
MW5B MW5C	ug/1				
MWGA. MWGB	ug/1				
MWGC	ug/1				
MW7A MW7B	ug/1 ug/1				
MW7C MW8	ug/1				
WW -	ng/1				
MW 1 1 MW 1 3	ug/1 ug/1				
MW14	1/gn				
NECASTRO-A NECASTRO-B	ug/1 ug/1				
	,)				

WOODWARD-CLYDE CONSULTANTS Hazardous Waste Database

GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Nickel
--

Sample Location

	Units /	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
	ug/1 ug/1	70.0	48.0000		
	ug/1		68.0000	55	52
	ug/1	465.000	408.000	419	412
	17/5n	555	. 089		,
	ug/1		65,0000	50	45
	ug/1			19	
	ng/1				
	1/00				
	1/50				
	10/1 1/00 1/00		0000	3.6	2.1
	ug/1)))	• •	t i
-	ug/1				
	ug/1				
	ng/1			32	50
	ug/1			17	
	10/1	34.0		100	75
	ug/1	•		7.1	
	1/20			101	96
	ug/1				
	ug/1	-		ţ	
	ng/1		48. 0000	75	91
	100/1 100/1			7	
	ng/1				
	ug/1	58.0			
- •	ug/1		2000		
	100/1 10/1		28.0000		
	ug/1)		
	ug/1	258	287	332	317
	ug/1	-		99	
	ug/1			41	
•	ug/1	37.0		38	!
	ug/1		(105	4 1
	1/5n		46.0	204	
- •	ug/ 1				
	7 /6n				

	Concer	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Potassium	R ted Parameters Site		
Sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	December 87 Dissolved
• • • • • • • • • • • • • • • • • • • •	1) = 1				
TEN	T/Bn	004	13700.0		
2EC	T/On	0001	2020.00		
	I/Bn	15900.0	12800.0		
**************************************	T/Bn	15900.0	14400.0		
SMS	ng/1	2880	5690.00		
DMA	ng/J	6880	6140		
DWG	ug/l	3340	3070.00		
DM8	ng/1	2180	2240.00		
DML7	ng/1	2720	2610.00		
DMU7	ng/1	1140	986		
WD11	ug/1				
WW11	ug/1				
MW1A	ng/1	881	3170.00		
MW1B	ug/1	3610	3170.00		
MW1C	ng/J	2020	1690.00		
MW2A	ng/1	1680	1730.00		
MW2B	ng/1	3470	5580.00		
MW2C	ng/1	3380	3250.00		
MW3A	ng/l	2990	3260.00		
MW3B	ng/l	1400	2020.00		
MM3C	ug/1	1320	1340.00		
MAA	ug/1	2510	2880.00		
MACE	. ng/1	35900	3650.00		
	T/Øn	2830	3020		,
ACMA	7/gn	2820	3440.00		
MACA CALLED	7/Bn	6510	6470.00		
	170 n	3030	90.00		
MEKB	1 / Da	1240	1280		
Mile	1 2 2	0040	00.0871		
MW7A	7/ 3 n	3610	4960.00		
MW7B	nd/1	2000	1650.00		
MW7C	ug/1	6140	4980.00		
MWB	ug/1	7520	10300		
6MM	ug/1	2540	2880		
MW1.1	ng/1	2900.00	9120.00		
MW13	ng/l	2790	3640.00		
ME14	ng/1	6330	8380.00		
MW15	ug/1	9440.00	0966		
NECASTRO-A	ng/1				
NECASTRO-B	ng/1				

	NOOM He	WOODWARD-CLYDE CONSULTANTS Hazardous Waste Database	LTANTS abase		
	Concer	GROUNDWATER Concentrations of Detected Parameters Dupont-Newport Site Silver	R ted Parameters Site		
sample Location Name	Units	August 87 Dissolved	August 87 Total	December 87 Total	December (Dissolved
3M1	ng/1				
5M3	1/gn 1/gn				
3.M.S.	ug/l			o. o	3.3
780	ng/J				
JMG JMB	ug/1 ug/1		9,6000	₹.5	
ML7	ng/1				
MUZ	ug/l				
W 11	ng/1			7.8	
WIA	ng/1				
W18	1/5n				
W2A	ug/1 ng/1				
M2B	ug/1				
16.2C	1/gn 1/z::				2.9
Wab	ug/1			3.0	
FN3C	ug/1				
#4.A	ug/l				
	ug/1				
resa The sa	ug/1	12.0	4.1000	2.8	
250B	ng/J	5.40	•		
Wo C	1/0n	7.90	0008.4		
fWGB	ng/1	10.0			
fwec fwg b	ug/1				
M7B	ug/1				
fW7C	ug/1				
5W8	ug/1			4.4	2.5
	I/Bn [/En				
111	ug/1	4.10			
M14	1/6n) •			
1815	ng/1				0
ECASTRO-A IECASTRO-B	ug/1 ug/1				TI TI
	Ì				